Feuille d'exercices nº 10

Analyse réelle

Exercice 1. Soit $f: \mathbf{R}_+^{\star} \to \mathbf{R}$.

En quels points $a \in \mathbf{R} \cup \{+\infty, -\infty\}$ la fonction f peut-elle admettre une limite?

Exercice 2. Étudier l'existence d'une limite en $+\infty$ pour $f: \mathbf{R} \longrightarrow \mathbf{R}, x \longmapsto \sin(x)$.

Exercice 3. Soit $x_0 \in \mathbf{R}$ et $f : \mathbf{R} \to \mathbf{R}$. On suppose

$$\exists \varepsilon_0 > 0, \ \forall n \in \mathbf{N}^*, \ \exists x_n \in \mathbf{R}, \ (|x_n - x_0| < \frac{1}{n} \ \text{et} \ |f(x_n) - f(x_0)| \ge \varepsilon_0).$$

Que peut-on en conclure?

Exercice 4. Soit $(a,b) \in \mathbf{R}^2$ tel que $a < b, x_0 \in]a,b[$ et $f:]a,b[\to \mathbf{R}.$

On suppose que f est continue en x_0 et que $f(x_0) > 0$.

Montrer qu'il existe un intervalle ouvert I inclus dans a, b et contenant a_0 tel que $\forall x \in I, f(x) > 0$.

Exercice 5. Étudier la continuité des fonctions suivantes en tout point de leur domaine :

- 1. $f_1: \mathbf{R}_+ \longrightarrow \mathbf{R}, x \longmapsto \begin{cases} x E(\frac{1}{x}) & \text{si } x > 0 \\ 1 & \text{sinon} \end{cases}$;
- 2. $f_2: \mathbf{R} \longrightarrow \mathbf{R}, x \longmapsto \begin{cases} \frac{1}{x} & \text{si } x \in \mathbf{Q}^* \\ x & \text{sinon} \end{cases}$

Exercice 6. Soit $f:[0,1]\to \mathbf{R}$. Montrer que si f est continue, alors

$$\forall \varepsilon > 0, \exists \delta > 0, \forall (x, y) \in [0, 1]^2, (|x - y| \le \delta \Longrightarrow |f(x) - f(y)| \le \varepsilon).$$

Indication: raisonner par contraposée et introduire des suites.

Exercice 7. Soit $E \in \mathcal{P}(\mathbf{R})$ tel que

- (i) pour tout $x \in E$, il existe $\varepsilon > 0$ tel que $|x \varepsilon, x + \varepsilon| \subset E$;
- (ii) pour tout $x \in E^c$, il existe $\varepsilon > 0$ tel que $|x \varepsilon, x + \varepsilon| \subset E^c$.
 - 1. Montrer que l'application

$$\chi_E : \mathbf{R} \longrightarrow \{0,1\}, \ x \longmapsto \begin{cases} 1 & \text{si } x \in E \\ 0 & \text{sinon} \end{cases}$$

est continue.

2. En déduire que $E = \emptyset$ ou $E = \mathbf{R}$.

Exercice 8. Soit $f:[0,1] \to \mathbf{R}$ une application continue.

- 1. Montrer que, si $f([0,1]) \subset [0,1]$, alors f possède un point fixe.
- 2. Faire de même en supposant cette fois que $[0,1] \subset f([0,1])$.

Exercice 9. Le but de cet exercice est de déterminer l'ensemble des applications $f: \mathbf{R} \to \mathbf{R}$ continues qui vérifient la condition

(*):
$$\forall (x,y) \in \mathbf{R}^2, \ f(x+y) = f(x) f(y).$$

Soit f vérifiant (*).

- 1. Montrer que : $\forall n \geq 2, \ \forall (x_1, \dots, x_n) \in \mathbf{R}^n, \ f(x_1 + \dots + x_n) = f(x_1) \cdots f(x_n).$
- 2. Quelles sont les valeurs possibles pour f(0)?
- 3. On suppose qu'il existe $x_0 \in \mathbf{R}$ tel que $f(x_0) = 0$. Que peut-on dire de f? On suppose désormais que f ne s'annule pas.
- 4. Montrer qu'il existe $\alpha \in \mathbf{R}_{+}^{\star}$ tel que pour tout $n \in \mathbf{N}$, $f(n) = \alpha^{n}$.
- 5. Montrer que : $\forall k \in \mathbf{Z}, f(k) = \alpha^k$.
- 6. Montrer que : $\forall r \in \mathbf{Q}, f(r) = \alpha^r$.
- 7. Conclure.

Exercice 10. Soit $f: \mathbf{R} \to \mathbf{R}$ et $g: \mathbf{R} \to \mathbf{R}$ dérivables.

On pose $h = \min(\{f, g\})$, autrement dit $h : \mathbf{R} \to \mathbf{R}$, $x \longmapsto \min(\{f(x), g(x)\})$. Soit $x_0 \in \mathbf{R}$ tel que $f(x_0) < g(x_0)$.

- 1. Montrer qu'il existe $\varepsilon > 0$ tel que, pour tout $x \in]x_0 \varepsilon, x_0 + \varepsilon[, h(x) = f(x).$
- 2. En déduire que h est dérivable en x_0 .

Exercice 11. Soit $a \in \mathbf{Z}$. On définit $f: \mathbf{R}^* \to \mathbf{R}, \ x \longmapsto x^a \cos\left(\frac{1}{x}\right)$.

- 1. À quelle condition sur a, f est-elle prolongeable par continuité en 0?
- 2. À quelle condition ce prolongement est-il dérivable en 0?
- 3. Dans ce cas, la dérivée est-elle continue en 0?

Exercice 12. Soit $f:[0,1]\to \mathbf{R}$ deux fois dérivable telle que f'' soit continue.

Soit $(a, b) \in [0, 1]^2$ tel que $a \neq b$.

Pour tout $(\alpha, \beta) \in \mathbf{R}^2$, on définit $\phi_{\alpha,\beta} : [0,1] \to \mathbf{R}, x \longmapsto \alpha + \beta(x-a)$.

- 1. Montrer qu'il existe $(\alpha, \beta) \in \mathbf{R}^2$ tels que $f(a) = \phi_{\alpha,\beta}(a)$ et $f(b) = \phi_{\alpha,\beta}(b)$.
- 2. Montrer que si $g:[0,1] \to \mathbf{R}$ est une fonction deux fois dérivables qui s'annule au moins trois fois, alors g'' s'annule au moins une fois.
- 3. Montrer que, pour tout $x \in [0,1] \setminus \{a,b\}$, il existe γ_x tel que $f(x) = \phi_{\alpha,\beta}(x) + \gamma_x(x-a)(x-b)$.
- 4. Montrer que, pour tout $x \in [0, 1]$, on a :

$$|f(x) - (\alpha + \beta(x-a))| \le |(x-a)(x-b)| \frac{1}{2} \max_{[0,1]} |f''|.$$

Exercice 13. On pose

$$A = \left\{ \begin{array}{c} \cos(x) - \cos(y) \\ \hline x - y \end{array} \middle| (x, y) \in \mathbf{R}^2, \ x \neq y \right\}.$$

Montrer que A possède des bornes inférieure et supérieure et les déterminer.

Exercice 14.

- 1. (a) Montrer que, pour tout x > 0, on a : $e^x 1 > x > 0$.

 Indication : on pourra au choix étudier les variations d'une fonction bien choisie, appliquer le théorème des accroissements finis ou écrire $e^x 1$ comme une intégrale.
 - (b) En déduire que si $x \ge 0$ vérifie $x(e^x 1) = x^2$, alors x = 0.
- 2. On définit $(u_n)_{n \in \mathbb{N}} \in (\mathbf{R}_+^*)^{\mathbb{N}}$ par $u_0 = 1$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{u_n^2}{e^{u_n} 1}$.
 - (a) Montrer que (u_n) est décroissante.
 - (b) Montrer que (u_n) converge et donner sa limite.

Exercice 15. On s'intéresse à l'équation différentielle

$$x y'(x) + y(x) = \cos(x). \tag{1}$$

- 1. Résoudre (1) sur] 0, $+\infty$ [puis sur] $-\infty$, 0 [.
- 2. Résoudre (1) sur R.

Exercice 16.

- 1. Montrer que l'équation (E) : $2 \ln x x + 2 = 0$ en $x \in \mathbb{R}_+^*$ admet une unique solution sur $[2, +\infty[$. On note a cette solution. Vérifier que de plus $a \in]5, 6[$.
- 2. Afin de déterminer une approximation de a, on introduit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=5$ et, pour tout $n\in\mathbb{N}$, $u_{n+1}=\varphi(u_n)$, où $\varphi:[2,+\infty[\to[2,+\infty[,x\mapsto 2\ln x+2.$
 - (a) i. Démontrer que, pour tout $n \in \mathbb{N}$, $u_n \in [5, 6]$.
 - ii. Montrer que la suite $(u_n)_{n \in \mathbb{N}}$ est croissante.
 - iii. Montrer que $(u_n)_{n \in \mathbb{N}}$ est convergente et que sa limite est a.
 - (b) i. Montrer que, pour tout $x \in [5, 6], |\varphi'(x)| \le \frac{2}{5}$.
 - ii. En déduire que, pour tout $n \in \mathbb{N}$,

$$|u_{n+1} - a| \le \frac{2}{5} |u_n - a|.$$

- iii. Démontrer que, pour tout $n \in \mathbf{N}$, $|u_n a| \le \left(\frac{2}{5}\right)^n$.
- (c) Déterminer un entier n tel que u_n soit une valeur approchée de a à 10^{-3} près.

3