Dans tout le chapitre, E désigne un espace euclidien de dimension $n \in \mathbb{N}^*$.

Proposition 1. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Les assertions suivantes sont équivalentes :

- (i). A est inversible et $A^{-1} = {}^{t}A$,
- (ii). ${}^{t}AA = I_n$,
- (iii). $A^tA = I_n$.

Définition 1. On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est orthogonale si ${}^tAA = I_n$.

Théorème 1. L'ensemble $O_n(\mathbb{R})$ des matrices orthogonales de $\mathcal{M}_n(\mathbb{R})$ est un sous-groupe de $(GL_n(\mathbb{R}), \times), \ c$ 'est-à-dire

- (i). $O_n(\mathbb{R}) \subset GL_n(\mathbb{R})$,
- (ii). $I_n \in O_n(\mathbb{R})$,
- (iii). $\forall A, B \in O_n(\mathbb{R}), \quad A \times B \in O_n(\mathbb{R}) \text{ et } A^{-1} \in O_n(\mathbb{R}).$

Proposition 2. Soit $A \in \mathcal{M}_n(\mathbb{R})$ de colonnes C_1, \ldots, C_n et de lignes L_1, \ldots, L_n . On a équivalence

- (i). la matrice A est orthogonale,
- (ii). la famille (C_1,\ldots,C_n) est une famille orthonormée de $\mathcal{M}_{n,1}(\mathbb{R})$ (pour le produit scalaire canonique).
- (iii). la famille (L_1,\ldots,L_n) est une famille orthonormée de $\mathcal{M}_{1,b}(\mathbb{R})$ (pour le produit scalaire canonique).

Théorème 2. Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base **orthonormée** de E et $\mathcal{F} = (e'_1, \dots, e'_n)$ une famille de vecteurs de E. On a équivalence entre :

- (i). la famille \mathcal{F} est une base **orthonormée** de E,
- (ii). la matrice $P = \operatorname{Mat}_{\mathcal{B}}(\mathcal{F})$ est une matrice orthogonale.

De plus, si tel est le cas, P est la matrice de passage de la base \mathcal{B} à la base \mathcal{F} et

$$\operatorname{Mat}_{\mathcal{F}}(\mathcal{B}) = {}^{t}P.$$

Définition 2. Soient $A, B \in \mathcal{M}_n(\mathbb{R})$. On dit que A et B sont orthogonalement semblables s'il existe $P \in O_n(\mathbb{R})$ telle que

$$B = {}^{t}PAP.$$

Proposition 3. Soient $A, B \in \mathcal{M}_n(\mathbb{R})$. On a équivalence entre :

- (i). A et B sont orthogonalement semblables,
- (ii). A et B représentent le même endomorphisme de l'espace euclidien E dans deux bases orthonormées B et B' de E.

Théorème 3 (Théorème de représentation de Riesz). Pour tout $a \in E$, notons $f_a = \langle \cdot, a \rangle$ l'application de E dans \mathbb{R} définie par

$$\forall x \in E, \quad f_a(x) = \langle x, a \rangle.$$

L'application

$$F: E \longrightarrow \mathcal{L}(E, \mathbb{R})$$

$$a \longmapsto f_a = \langle \cdot, a \rangle$$

est un isomorphisme d'espaces vectoriels. En particulier, pour tout $f \in \mathcal{L}(E, \mathbb{R})$, il existe un unique $a \in E$ tel que

$$\forall x \in E, \quad f(x) = \langle x, a \rangle.$$

Théorème 4. Soit $u \in \mathcal{L}(E)$. Il existe un unique endomorphisme $u^* \in \mathcal{L}(E)$ tel que :

$$\forall x, y \in E, \quad \langle u(x), y \rangle = \langle x, u^*(y) \rangle.$$

On appelle cet endomorphisme u^* l'adjoint de u.

Proposition 4. Soient $u \in \mathcal{L}(E)$ et $\mathcal{B} = (e_1, \dots, e_n)$ une base **orthonormée** de E. Notons $A = \operatorname{Mat}_{\mathcal{B}}(u)$, alors

$$\operatorname{Mat}_{\mathcal{B}}(u^*) = {}^{t}A.$$

Proposition 5. Pour tout $\lambda \in \mathbb{R}$, pour tous $u, v \in \mathcal{L}(E)$, on a :

- (i). $(\lambda u + v)^* = \lambda u^* + v^*$,
- (ii). $(u \circ v)^* = v^* \circ u^*$,
- $(iii). (u^*)^* = u,$
- (iv). si u est bijectif, alors u^* l'est aussi et $(u^{-1})^* = (u^*)^{-1}$.

Proposition 6. Soit $u \in \mathcal{L}(E)$, alors

$$\operatorname{Ker}(u^*) = (\operatorname{Im}(u))^{\perp} \quad et \quad \operatorname{Im}(u^*) = (\operatorname{Ker}(u))^{\perp}.$$

Proposition 7. Soit $u \in \mathcal{L}(E)$. Soit F un sous-espace vectoriel de E stable par u, alors F^{\perp} est stable par u^* .

Définition 3. On dit qu'un endomorphisme $u \in \mathcal{L}(E)$ est autoadjoint (ou symétrique) si $u^* = u$, ce qui équivaut à

$$\forall x, y \in E, \quad \langle u(x), y \rangle = \langle x, u(y) \rangle.$$

Proposition 8. Soient $u \in \mathcal{L}(E)$ et $\mathcal{B} = (e_1, \dots, e_n)$ une base **orthonormée** de E. On a équivalence entre:

- (i). u est autoadjoint,
- (ii). la matrice $Mat_{\mathcal{B}}(u)$ est symétrique.

Corollaire 1. L'ensemble S(E) des endomorphismes symétriques de E est un sous-espace vectoriel de $\mathcal{L}(E)$ de dimension $\frac{n(n+1)}{n}$.

Proposition 9. Soit $p \in \mathcal{L}(E)$ un projecteur (i.e. $p^2 = p$). On a équivalence entre :

- (i). p est un projecteur orthogonal,
- (ii). p est autoadjoint.

Lemme 1. Soit $A \in S_n(\mathbb{R})$ une matrice symétrique réelle. Le polynôme caractéristique de A est scindé sur R. Autrement dit, les valeurs propres de A (a priori complexes) sont toutes réelles.

Corollaire 2. Tout endomorphisme autoadjoint d'un espace euclidien non nul admet au moins une valeur propre réelle.

Lemme 2. Soit $u \in \mathcal{L}(E)$ autoadjoint. Les sous-espaces propres de u sont deux à deux orthogonaux.

Lemme 3. Soit $u \in \mathcal{L}(E)$ autoadjoint et F un sous-espace vectoriel de E stable par u. Alors F^{\perp} est aussi stable par u. De plus, les endomorphismes induits par u sur F et F^{\perp} sont encore autoadjoints.

Théorème 5 (Théorème spectral). Soit $u \in \mathcal{L}(E)$. On a équivalence entre :

- (i). u est autoadjoint,
- (ii). E est la somme directe orthogonale des sous-espaces propres de u, i.e.

$$E = \bigoplus_{\lambda \in \operatorname{Sp}(u)}^{\perp} E_{\lambda}(u) \quad \text{où } E_{\lambda}(u) = \operatorname{Ker}(u - \lambda \operatorname{Id}_{E}),$$

(iii). u est diagonalisable dans une base orthonormée, i.e. il existe une base orthonormée $\mathcal B$ de E dans laquelle

$$\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} \lambda_1 & (0) \\ & \ddots & \\ (0) & & \lambda_n \end{pmatrix} \quad avec \ \lambda_1, \dots, \lambda_n \in \mathbb{R}.$$

Théorème 6. Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice carrée réelle. On a équivalence entre :

- (i). $A \in S_n(\mathbb{R})$
- (ii). A est orthogonalement semblable à une matrice diagonale, i.e.

$$\exists P \in O_n(\mathbb{R}), \quad \exists D \in \mathcal{M}_n(\mathbb{R}) \text{ diagonale}, \quad D = P^{-1}AP = {}^tPAP.$$

Définition 4. Soit $u \in \mathcal{L}(E)$ autoadjoint. On dit que u est positif si

$$\forall x \in E, \quad \langle x, u(x) \rangle > 0.$$

On dit que u est défini positif si u est positif et

$$\forall x \in E, \quad \langle x, u(x) \rangle = 0 \iff x = 0_E,$$

 $ce~qui~\'equivaut~aussi~\`a$

$$\forall x \in E, \quad x \neq 0_E, \quad \langle x, u(x) \rangle > 0.$$

On note $S^+(E)$ (resp. $S^{++}(E)$) l'ensemble des endomorphismes de E symétriques positifs (resp. définis positifs).

Proposition 10. Soit u un endomorphisme autoadjoint de E. On a équivalence entre :

- (i). u est positif (resp. défini positif),
- (ii). $\operatorname{Sp}(u) \subset \mathbb{R}^+$ (resp. $\operatorname{Sp}(u) \subset \mathbb{R}_+^*$).

Définition 5. Soit $A \in S_n(\mathbb{R})$ une matrice symétrique réelle. On dit que A est positive si

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), \quad {}^t XAX \ge 0.$$

On dit que A est définie positive si A est positive et

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), \quad {}^{t}XAX = 0 \iff X = 0_{\mathcal{M}_{n,1}(\mathbb{R})}$$

ce qui équivaut aussi à

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), \quad X \neq 0_{\mathcal{M}_{n,1}(\mathbb{R})}, \quad {}^t XAX > 0.$$

On note $S_n^+(\mathbb{R})$ (resp. $S_n^{++}(\mathbb{R})$) l'ensemble des matrices symétriques réelles de taille n positives (resp. définies positives).

Proposition 11. Soit $A \in S_n(\mathbb{R})$. On a équivalence entre :

- (i). A est positive (resp. définie positive),
- (ii). $\operatorname{Sp}(A) \subset \mathbb{R}^+$ (resp. $\operatorname{Sp}(A) \subset \mathbb{R}_+^*$).

Proposition 12. Soit $u \in S^+(E)$, alors il existe un unique endomorphisme $v \in S^+(E)$ tel que

Corollaire 3. Pour toute matrice $S \in S_n^+(\mathbb{R})$, il existe une unique matrice $A \in S_n^+(\mathbb{R})$ telle que $S = A^2$.