## Partie commune - Correction du devoir nº 3

## Partie analyse

Exercice 1. On désigne par  $l^{\infty}$  l'espace vectoriel des suites bornées de nombres réels. Soit  $k \geq 0$  fixé. Pour  $x = (x_n)_{n \in \mathbb{N}}$  un élément de  $l^{\infty}$ , on pose

$$N_{\infty}(x) = \sup_{n \in \mathbb{N}} |x_n|,$$

et

$$N_{\infty,k}(x) = \sum_{i=0}^{k} |x_i| + \sup_{n \ge k+1} |x_n|.$$

1. Montrer que  $N_{\infty}$  et  $N_{\infty,k}$  sont des normes sur  $l^{\infty}$ .

Il faut reprendre la définition d'une norme. Nous le décrivons seulement pour la première norme,  $N_{\infty}$ .

- Soit  $x \in l^{\infty}$ , si  $N_{\infty}(x) = 0$  alors pour tout  $n \in \mathbb{N}$ ,  $x_n = 0$  donc x = 0. Bien entendu, si x = 0 on a  $N_{\infty}(x) = 0$ .
- Soit  $\lambda \in \mathbb{R}$  et  $x \in l^{\infty}$ ,  $N_{\infty}(\lambda x) = \sup_{n \in \mathbb{N}} |\lambda x_n| = |\lambda| \sup_{n \in \mathbb{N}} |x_n| = |\lambda| N_{\infty}(x)$ .
- Enfin, pour tout  $x, y \in l^{\infty}$ ,

$$N_{\infty}(x+y) = \sup_{n \in \mathbb{N}} |x_n + y_n| \le \sup_{n \in \mathbb{N}} |x_n| + \sup_{n \in \mathbb{N}} |y_n| = N_{\infty}(x) + N_{\infty}(y).$$

Ceci car pour tout  $n \in \mathbb{N}$ ,  $|x_n + y_n| \le |x_n| + |y_n|$  et le supremum d'une somme est inférieur à la somme des suprema.

2. Montrer qu'elles sont équivalentes.

Pour tout  $x \in l^{\infty}$  et pour tout  $n \in \mathbb{N}$ ,  $|x_n| \leq N_{\infty}(x)$  ainsi (attention il y a k+1 termes)

$$\sum_{i=0}^{k} |x_i| \le (k+1)N_{\infty}(x).$$

De plus  $\sup_{n\geq k+1} |x_n| \leq N_{\infty}(x)$  puisque l'on prend le supremum sur un ensemble d'indices plus petit, au final on a montré que

$$N_{\infty,k}(x) \le (k+2)N_{\infty}(x)$$
.

Réciproquement, pour tout  $x \in l^{\infty}$ ,

$$N_{\infty}(x) = \sup_{n \in \mathbb{N}} |x_n| = \max\{ \max_{1 \le i \le k} |x_i|, \sup_{n \ge k+1} |x_n| \} \le \max_{1 \le i \le k} |x_i| + \sup_{n \ge k+1} |x_n| \le \sum_{i=0}^k |x_i| + \sup_{n \ge k+1} |x_n| = N_{\infty,k}(x).$$

Les deux normes sont donc équivalentes.

**Exercice 2.** Métrique S.N.C.F. Soit d la distance euclidienne sur  $\mathbb{R}^2$ . On fixe un point  $p \in \mathbb{R}^2$ . Pour  $x, y \in \mathbb{R}^2$  on pose :

$$D(x,y) = \left\{ egin{array}{ll} d(x,y) & ext{si} & x,y,p & ext{sont align\'es} \ d(x,p) + d(y,p) & ext{si} & x,y,p & ext{ne le sont pas} \end{array} 
ight.$$

- 1. Prouver que D est une distance sur  $\mathbb{R}^2$ . Il faut reprendre la définition d'une distance.
  - Puisque la distance d est symétrique, pour tout  $x, y \in \mathbb{R}^2$  on D(x, y) = D(y, x).

- Soit  $x, y \in \mathbb{R}^2$ , si D(x, y) = 0 alors, si x, y et p sont alignés on a d(x, y) = 0 et donc x = y. Si ils ne sont pas alignés alors d(x, p) + d(y, p) = 0 ce qui implique alors x = y = p. En qui n'est pas possible car alors les points sont alignés. De toute façon on a x = y. Bien entendu, si x = y alors, x, y et p sont alignés et donc D(x, y) = 0.
- Soit  $x, y, z \in \mathbb{R}^2$ . On cherche à montrer l'inégalité triangulaire.
  - Si x, y, z et p sont alignés alors  $D(x, y) = d(x, y) \le d(x, z) + d(z, x)$ . Puisque les points sont alignés on a d(x, z) = D(x, z) et d(z, x) = D(z, x) et donc

$$D(x,y) \le D(x,z) + D(z,y).$$

- Si x, y, p sont alignés et z, x, p et z, y, p ne sont pas alignés alors D(x,y) = d(x,y), D(x,z) = d(x,p) + d(p,z) et D(y,z) = d(y,p) + d(p,z). En utilisant l'inégalité triangulaire  $d(x,y) \le d(x,p) + d(p,z) + d(p,y) + d(p,y)$  on a bien

$$D(x,y) \le D(x,z) + D(z,y).$$

– Si x, y, p ne sont pas alignés et y, z et p sont alignés on a D(x,y)=d(x,p)+d(p,y), D(x,z)=d(x,p)+d(p,z) et D(z,y)=d(y,z). L'inégalité triangulaire  $d(p,y)\leq d(p,z)+d(z,y)$  et on obtient

$$D(x,y) \le D(x,z) + D(z,y).$$

– Enfin si personne n'est alignés avec p on a  $D(x,y)=d(x,p)+d(p,y),\ D(x,z)=d(x,p)+d(p,z)$  et D(z,y)=d(y,p)+d(p,z). On a directement

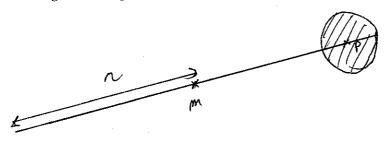
$$D(x,y) \le D(x,z) + D(z,y).$$

D est donc une distance sur  $\mathbb{R}^2$ .

- 2. Soit r > 0. Dessiner la boule B(p,r) pour cette distance D. Soit r > 0, si  $x \in B(p,r)$  alors D(x,p) < r. Mais x et p sont toujours alignés, donc D(x,p) = d(x,p). Ainsi  $x \in B(p,r)$  si et seulement si d(x,p) < r. Donc B(p,r) est la boule euclidienne ouverte de centre p et de rayon r.
- 3. Soit m∈ R² \ {p}. Dessiner la boule B(m,r) (distinguer suivant que r ≤ d(p,m) ou non).
  Supposons que r ≤ d(p,m). Soit x ∈ B(m,r), si x, m et p sont alignés alors B(m,x) = d(m,x). Il faut dans ce cas que d(m,x) < r. Si maintenant ils ne sont pas alignés, B(m,x) = d(m,p) + d(p,x). Il faut dans ce cas que d(m,p) + d(p,x) < r, ce qui est impossible car r ≤ d(p,m). Donc dans ce cas B(m,r) est l'intervalle centré en m et de longueur r dirigé vers p, comme le dessin.</p>



Supposons que  $r \ge d(p,m)$ . Soit  $x \in B(m,r)$ , si x, m et p sont alignés alors B(m,x) = d(m,x). Il faut dans ce cas que d(m,x) < r. On retrouve le cas précédent. Si maintenant ils ne sont pas alignés, B(m,x) = d(m,p) + d(p,x). Il faut dans ce cas que d(m,p) + d(p,x) < r, ainsi  $d(x,p) \le r - d(m,p)$ . Dans ce cas, x est dans la boule euclidienne centrée en p et de rayon r - d(m,p). Donc B(m,r) est l'intervalle centré en m et de longueur r dirigé vers p plus une boule euclidienne centré p et de rayon r - d(m,p) comme le dessin.



Exercice 3. Soit  $C^1([0,1],\mathbb{R})$  l'ensemble des fonctions réelles dérivables à dérivée continue sur [0,1]. On pose, pour toute fonction  $f \in C^1([0,1],\mathbb{R})$ ,

$$N(f) = \int_0^1 (|f(x) - f'(x)|) dx.$$

L'application N, définit-elle une norme sur  $\mathcal{C}^1([0,1],\mathbb{R})$  ?

L'application n'est pas une norme car l'application  $f:[0,1]\mapsto\mathbb{R}$  définie par  $\forall x\in[0,1],\ f(x)=e^x$  et bien dans l'espace  $\mathcal{C}^1([0,1],\mathbb{R})$  et vérifie pour tout  $x\in\mathbb{R},\ f'(x)=f(x)$ . Elle n'est pas nulle et pourtant N(f)=0.

## Partie algèbre

Exercice 4. Dans  $\mathbb{R}^3$ , considérons la base  $\mathcal{B} = (b_1, b_2, b_3)$  avec  $b_1 = (1, 0, 0)$ ,  $b_2 = (0, 1, 0)$  et  $b_3 = (0, 1, 1)$ . Soit u l'endomorphisme de  $\mathbb{R}^3$  dont la matrice relativement à la base  $\mathcal{B}$  est :

$$A = \left(\begin{array}{rrr} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{array}\right).$$

1. Déterminer les valeurs propres de u.

On voit que  $\operatorname{rg}(A-2\operatorname{Id})=1$  donc 2 est une valeur propre de multiplicité au moins  $2=\dim E_2$ . De plus la trace de A est 3 donc la valeur propre restante est -1 car 2+2+(-1)=3. Ainsi les valeurs propres de u (qui sont celles de A) sont 2 et -1. On en déduit également que le polynôme caractéristique de u est  $P_u=-(X-2)^2(X+1)$  et qu'il est donc scindé sur  $\mathbb{R}$ .

2. Montrer que u est diagonalisable.

Comme on l'a remarqué à la question 1, dim  $E_2 = 2$  et c'est la mutiplicité de 2 dans  $P_A$ . C'est également le cas de façon évidente pour -1 puisque sa multiplicité est 1. Ainsi, et puisque  $P_u$  est scindé, on en déduit que u est diagonalisable.

3. Déterminer une base de  $\mathbb{R}^3$  formée de vecteurs propres de u.

Pour commencer, déterminons une base de vecteurs propres pour A. On notera  $E_{\lambda}^{A}$  et  $E_{\lambda}^{u}$  les espaces propres de A et u respectifs.

Calculons  $E_2^A$  et  $E_{-1}^A$ . Nous savons que  $E_2^A$  est de dimension 2; ainsi il suffit de trouver deux vectueurs non colinéaires dans  $E_2^A$  pour en obtenir une base. La matrice  $A-2\mathrm{Id}$  est la matrice dont tous les coefficients sont -1. Deux vecteurs évidents de son noyau sont  $w_1=(1,-1,0)$  et  $w_2=(1,0,-1)$ . Ces deux vecteurs forment une base de  $E_2^A$ .

Concernant  $E_{-1}^A$ ,  $A + \operatorname{Id} = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$ . Dans cette matrice on a la relation suivante entre colonnes :  $C_1 + C_2 + C_3 = 0$ . Ainsi le vecteur  $w_3 = (1, 1, 1)$  appartient à  $E_{-1}^A$ . Ce dernier étant de dimension 1, on

obtient  $E_{-1}^A = \text{vect}(w_3)$ .

Comme conclusion, la famille  $(w_1, w_2, w_3)$  est une base de vecteurs propres de A.

En utilisant la base  $\mathcal{B}$ , on obtient les vecteurs  $v_1, v_2, v_3$  dont les vecteurs coordonnées sont les  $w_i$ . On obtient  $v_1 = b_1 - b_2 = (1, -1, 0), v_2 = b_1 - b_3 = (1, -1, -1)$  et  $v_3 = b_1 + b_2 + b_3 = (1, 2, 1)$ . Ces  $v_i$  forment une base de vecteurs propres de  $v_i$ .

Remarque : Les questions posées concernent, non pas A mais u.

Exercice 5. Les matrices suivantes sont-elles semblables dans  $\mathcal{M}_3(\mathbb{R})$ ?

$$A = \left(\begin{array}{ccc} 1 & 0 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 2 \end{array}\right), \qquad B = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 5 & 2 \end{array}\right).$$

Indication : On s'intéressera à la diagonalisibilité de ces matrices.

Les matrices A et B ont le même polynôme caractéristique  $P_A = P_B = -(X-1)^2(X-2)$ . Ce polynôme est scindé sur  $\mathbb{R}$ . La matrice A (resp. B) est donc diagonalisable si et seulement si  $\dim(E_1^A) = 2$  (resp.  $\dim(E_1^B) = 2$ ). Or si on écrit A-1·Id et B-1·Id, on obtient une matrice de rang 1, donc par le théorème du rang, la dimension des espaces propres de A et B pour la valeur propre 1 est 2.

Ainsi A et B sont toutes deux diagonalisables. Elles sont donc semblables à la matrice diagonale D = Diag(1, 1, 2). La similitude est une relation d'équivalence et en particulier elle est transitive ce qui entraine, puisque  $A \sim D$  et  $B \sim D$ , que A et B sont semblables.

Exercice 6. Soit  $E = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$  l'espace vectoriel des fonctions réelles indéfiniment dérivable sur  $\mathbb{R}$ . Soit u l'endomorphisme de E donné par u(f) = f'' (f dérivée deux fois) pour  $f \in E$ .

- 1. Soit  $\alpha \in \mathbb{R}$ . Calculer u(f) et u(g) où  $f: x \mapsto \exp(\alpha x)$  et  $g: x \mapsto \sin(\alpha x)$ . Pour  $x \in \mathbb{R}$ ,  $u(f)(x) = f''(x) = \alpha^2 \exp(\alpha x)$  et  $u(g)(x) = g''(x) = -\alpha^2 \sin(\alpha x)$ . Ainsi  $u(f) = \alpha^2 \cdot f$  et  $u(g) = -\alpha^2 \cdot g$
- 2. En déduire l'ensemble des valeurs propres de u.

Soit  $\lambda \in \mathbb{R}$ . Traitons deux cas selon le signe de  $\lambda$ .

Cas  $\lambda \geq 0$ . Soit  $\alpha = \sqrt{\lambda}$ . Alors en prenant f comme au (1), on obtient  $u(f) = \lambda \cdot f$ . Donc  $\lambda$  est une valeur propre de u.

Cas  $\lambda < 0$ . Soit  $\alpha = \sqrt{-\lambda}$ . Dans ce cas, on considère g comme au (1) et on obtient  $u(g) = \lambda \cdot g$  d'où l'on déduit que  $\lambda$  est une valeur propre de u.

Ainsi tout  $\lambda \in \mathbb{R}$  est une valeur propre donc l'ensemble des valeurs propres de u est l'ensemble  $\mathbb{R}$ .