Problème - Devoir numéro 2 Les calculatrices sont autorisées, mais totalement inutiles

Pour tout $n \ge 0$, on note m_n , c_n et p_n les fonctions respectivement définies sur [-1,1], \mathbf{R} et \mathbf{R} comme suit :

$$m_n(t) = t^n, t \in [-1, 1],$$

$$c_n(\varphi) = \cos(n\varphi), \ \varphi \in \mathbf{R},$$

$$p_n(\varphi) = \cos^n(\varphi), \ \varphi \in \mathbf{R}.$$

Première partie

- 1) Montrer que (m_0, m_1, m_2) est libre.
- 2) a) Soit $n \ge 1$ et soit $\lambda_0, \lambda_1, \dots, \lambda_n$ des réels tels que :

$$\lambda_0 m_0 + \lambda_1 m_1 + \dots + \lambda_n m_n = 0.$$

Montrer que $\lambda_1 m_0 + 2\lambda_2 m_1 + \dots + n\lambda_n m_{n-1} = 0$.

- b) Montrer par récurrence sur $n \geq 0$ que (m_0, \ldots, m_n) est libre.
- 3) Montrer que pour tout $n \ge 0$ la fonction e définie pour tout $t \in [-1, 1]$ par $e(t) = e^t$ n'appartient pas à $\text{Vect}(m_0, \dots, m_n)$.
- 4) Déduire de la question 2 que (p_0, \ldots, p_n) est libre.

Deuxième partie

- 5) Pour θ réel, écrire $\cos(3\theta)$ en fonction de $\cos^3\theta$ et $\cos\theta$, puis $\cos^3\theta$ en fonction de $\cos(3\theta)$ et $\cos\theta$.
- 6) a) Montrer que pour tous α et β réels :

$$\cos \alpha \cos \beta = \frac{1}{2} \left[\cos(\alpha + \beta) + \cos(\alpha - \beta) \right].$$

b) En déduire que pour tous i, j entiers naturels :

$$c_i c_j = \frac{1}{2} (c_{i+j} + c_{|i-j|}).$$

7) a) Montrer par récurrence sur $n \ge 0$ que :

pour tout
$$n \in \mathbb{N}$$
, $p_n \in \text{Vect}(c_0, \dots, c_n)$.

b) Soit $n \geq 0$. En utilisant la famille (p_0, \dots, p_n) , montrer que $\text{Vect}(c_0, \dots, c_n)$ est de dimension supérieure ou égale à n+1.

En déduire que (c_0, \ldots, c_n) est libre et que $\operatorname{Vect}(c_0, \ldots, c_n) = \operatorname{Vect}(p_0, \ldots, p_n)$.

Troisième partie

- 8) a) Calculer $\int_0^{\pi} c_0(t) dt$ puis $\int_0^{\pi} c_i(t) dt$ pour $i \neq 0$.
 - b) Pour $i \neq j$, calculer:

$$\int_0^{\pi} c_i(t)c_j(t) dt.$$

c) Calculer enfin $\int_0^\pi c_0^2(t) dt$ puis $\int_0^\pi c_i^2(t) dt$ pour $i \neq 0$.

9) Soit $n \geq 0$, soit $\lambda_0, \lambda_1, \dots, \lambda_n$ des réels tels que :

$$\lambda_0 c_0 + \dots + \lambda_n c_n = 0$$

et soit i un entier compris entre 0 et n

En calculant de deux façons différentes l'intégrale :

$$\int_0^{\pi} \left(\lambda_0 c_0(t) + \dots + \lambda_n c_n(t)\right) c_i(t) dt$$

montrer que $\lambda_i = 0$

et en tirer une nouvelle preuve de la liberté de la famille (c_0, \ldots, c_n) .

10) a) On note α_n la dernière coordonnée dans la base (c_0, \ldots, c_n) de la fonction p_n (considérée comme vecteur de l'espace $\text{Vect}(c_0, \ldots, c_n)$, ce qu'elle est au vu de la question 7 a)).

En utilisant la représentation de $\cos \varphi$ au moyen de l'exponentielle complexe, écrire explicitement p_n comme combinaison linéaire de (c_0, \ldots, c_n) (il pourra être confortable de traiter séparément les cas où n est pair et où n est impair).

En déduire la valeur de α_n et remarquer que $\alpha_n \neq 0$.

b) En déduire une nouvelle preuve de la liberté de la famille (p_0, \ldots, p_n) .

Quatrième partie

Soit f une fonction continue de $[0, \pi]$ vers \mathbf{R} .

On notera:

$$a_1 = \frac{1}{\pi} \int_0^{\pi} f(t) dt$$
 et $b_1 = \frac{2}{\pi} \int_0^{\pi} f(t) \cos t dt$.

L'objectif de cette partie est de minorer sur ${\bf R}^2$ la fonction I définie par :

$$I(x,y) = \int_0^{\pi} (f(t) - x - y \cos t)^2 dt.$$

- 11) Calculer a_1 et b_1 lorsque f est la fonction définie par f(t) = t.
- 12) On ne suppose plus que f est la fonction définie par f(t) = t: on suppose seulement, comme indiqué dans l'introduction de cette partie, que f est continue.

Dans cette question, on suppose qu'il existe un (a_0, b_0) dans \mathbb{R}^2 en lesquels la fonction I atteint un minimum. On introduit les fonctions u et v de \mathbb{R} vers \mathbb{R} définies comme suit :

$$u(x) = \int_0^{\pi} (f(t) - x - b_0 \cos t)^2 dt \qquad \text{et} \qquad v(y) = \int_0^{\pi} (f(t) - a_0 - y \cos t)^2 dt$$

- a) Montrer que la fonction u admet un minimum en a_0 et en déduire que $u'(a_0) = 0$. De même montrer que $v'(b_0) = 0$.
- b) En déduire que $a_0 = a_1$ et que $b_0 = b_1$.
- 13) Soit h et k deux réels. Montrer la formule :

$$I(a_1 + h, b_1 + k) = I(a_1, b_1) + \int_0^{\pi} (h + k \cos t)^2 dt.$$

En déduire que I admet un minimum au point (a_1, b_1) et en ce seul point.