Math IV - PMI - Algèbre

Feuille d'exercices nº 1

Produits scalaires et inégalités de Cauchy-Schwarz

Exercice 1. Les applications suivantes définissent-elles des produits scalaires sur les espaces vectoriels considérés?

1. Soit $n \in \mathbb{N}$. On considère l'application φ définie sur $(\mathbb{R}_n[X])^2$ par :

$$\forall P, Q \in \mathbb{R}_n[X], \quad \varphi(P,Q) = \sum_{k=0}^n P(k)Q(k).$$

2. Soit $n \in \mathbb{N}^*$. Pour $\mathbb{K} = \mathbb{R}$ (resp. $\mathbb{K} = \mathbb{C}$), on considère l'application ψ définie sur $(\mathcal{M}_n(\mathbb{K}))^2$ par :

$$\forall A, B \in \mathcal{M}_n(\mathbb{K}), \quad \psi(A, B) = \operatorname{Tr}({}^t A B).$$

3. Soit $a \in \mathbb{R}$. On considère l'application χ définie sur $(\mathbb{R}^2)^2$ par :

$$\forall (x,y), (x',y') \in \mathbb{R}^2, \quad \chi((x,y), (x',y')) = 2xx' + 2ayy' + xy' + x'y.$$

4. On note $E = \mathcal{C}([-1;1];\mathbb{R})$ et on considère l'application définie par

$$\forall f, g \in E, \quad b(f, g) = \int_{-1}^{1} f(t)g(t)(1 - t^2) dt.$$

Si oui, (et lorsque cela a un sens) préciser si la base canonique de l'espace vectoriel considéré est orthogonale pour ce produit scalaire.

Exercice 2. Soient $a_1, \ldots, a_n \in \mathbb{R}$ et $A \in \mathcal{M}_n(\mathbb{R})$ la matrice diagonale dont la diagonale est constituée de a_1, \ldots, a_n . Soit $\varphi : \mathcal{M}_{n \times 1}(\mathbb{R})^2 \to \mathbb{R}$ définie par $\varphi(X, Y) =$ ${}^tX\cdot A\cdot Y$. Notez que φ est à valeurs dans $\mathcal{M}_1(\mathbb{R})$ mais on identifie ce dernier à \mathbb{R} par un abus de notation.

- 1. Donner une condition nécessaire et suffisante sur les a_i pour que φ soit un produit scalaire.
- 2. Sous cette condition, montrer que la base canonique de $\mathcal{M}_{n\times 1}(\mathbb{R})$ est une base orthogonale.
- 3. Toujours sous la même condition, déterminer une base orthonormée de $\mathcal{M}_{n\times 1}(\mathbb{R})$.

Semestre de printemps 2022-2023 Exercice 3. Les deux questions sont indépendantes.

1. On munit $\mathbb{R}_2[X]$ du produit scalaire φ dont la matrice dans la base canonique $\mathcal{B}_{c} = (1, X, X^{2}) \text{ est}$

$$M = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{pmatrix}.$$

Déterminer $\varphi(2X-1, X^2+1)$.

2. Soit E un espace euclidien de dimension $n \in \mathbb{N}^*$ et A la matrice d'un produit scalaire sur E dans une base de E. Montrer que A est inversible.

Exercice 4. Soit $\mathcal{B} = (b_1, \ldots, b_n)$ une base d'un espace euclidien (E, <, >). Montrer que \mathcal{B} est orthonormale si, et seulement si, pour tout $x \in E$ la coordonnée de x selon b_i est $\langle x, b_i \rangle$ pour tout $i \in [1; n]$.

Exercice 5. Soit (E, \langle , \rangle) un espace euclidien. On considère une famille $\mathcal{B} = (b_1, \dots, b_n)$ constituée d'éléments de E de norme 1. On suppose que pour tout $x \in E$,

$$||x||^2 = \sum_{i=1}^n \langle x, b_i \rangle^2.$$

1. Montrer que la famille \mathcal{B} est une famille orthogonale.

2. Soit $x \in E$, montrer que $x = \sum_{i=1}^{n} \langle x, b_i \rangle b_i$.

3. En déduire que \mathcal{B} est une base orthonormée de E.

Exercice 6. On se place dans l'espace vectoriel $E = \mathcal{C}([0;1],\mathbb{R})$ muni du produit scalaire usuel:

$$\forall f, g \in E, \quad \varphi(f, g) = \int_0^1 f(t)g(t)dt.$$

Pour tout $n \in \mathbb{N}$, on considère l'application $h_n : t \in [0;1] \longmapsto \cos(2\pi nt)$.

- 1. Montrer que la famille d'applications $(h_n)_{n\in\mathbb{N}}$ est orthogonale.
- 2. En raisonnant par l'absurde, montrer que l'espace vectoriel E n'est pas de dimension finie.

Exercice 7. En utilisant l'inégalité de Cauchy-Schwarz, montrer pour tout $f \in \mathcal{C}([a;b],\mathbb{R})$:

$$\left(\int_{a}^{b} |f(t)|dt\right)^{2} \le (b-a)\int_{a}^{b} f(t)^{2}dt.$$

Préciser le cas d'égalité.

Exercice 8. Soit $n \in \mathbb{N}^*$ et $D = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid \forall i \in \{1, \dots, n\}, x_i \in \mathbb{R}_+^*\}$. On considère l'application $h: D \longrightarrow \mathbb{R}$ définie par :

$$h(x_1, \dots, x_n) = \left(\sum_{i=1}^n x_i\right) \left(\sum_{i=1}^n \frac{1}{x_i}\right).$$

Montrer que h admet un minimum sur D et décrire les vecteurs pour lesquels ce minimum est atteint.

Exercice 9. Soient a un vecteur unitaire d'un espace préhilbertien réel (E, \langle , \rangle) , k un réel et $\varphi : E \times E \longrightarrow \mathbb{R}$ l'application déterminée par

$$\forall (x,y) \in E^2, \quad \varphi(x,y) = \langle x,y \rangle + k \langle x,a \rangle \langle y,a \rangle$$

Déterminer une condition nécessaire et suffisante pour que φ soit un produit scalaire.

Exercice 10. Soit $(E, \langle \ , \ \rangle)$ un espace préhilbertien complexe. Soit $\varphi : E \times E \to \mathbb{R}$ définie par $\varphi(x,y) = \text{Re}(\langle x,y \rangle)$. Montrer que φ est un produit scalaire sur le \mathbb{R} -espace vectoriel E.

Exercice 11. Soit E un espace vectoriel complexe de dimension finie n. Montrer que pour toute base \mathcal{B} de E, il existe un produit scalaire hermitien sur E tel que \mathcal{B} soit orthonormée.

Exercice 12. Soit $\varphi: \mathbb{C}[X] \times \mathbb{C}[X] \to \mathbb{C}$ définie par :

$$\varphi(P,Q) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \overline{P(e^{it})} Q(e^{it}) dt.$$

1. Montrer que φ est un produit scalaire hermitien.

- 2. Montrer que la famille $(X^k)_{k\in\mathbb{N}}$ de $\mathbb{C}[X]$ est orthonormée. Soient $a_0,\ldots,a_{n-1}\in\mathbb{C}$ et $Q=a_0+a_1X+\cdots+a_{n-1}X^{n-1}+X^n$.
- 3. Calculer $||Q||^2$ en fonction des a_i .
- 4. Soit $M=\sup\{|Q(z)|\ ;\ z\in\mathbb{C},\ |z|=1\}.$ Montrer que $M\geq 1$ et que : $M=1\iff Q=X^n.$