Devoir nº 2 - Correction

Partie analyse

Exercice 1. Etudier la convergence de la série de terme général u_n dans les cas suivants :

1. $u_n = \sin(n\pi/2), n \in \mathbb{N}$.

Le terme général de la série ne tend pas vers 0, donc la série $\sum u_n$ ne peux converger.

2. $u_n = \frac{2^n}{n^2} (\sin(\alpha))^{2n}$, $n \in \mathbb{N}^*$, $\alpha \in [0, \pi/2]$.

Pour ce dernier cas, on discutera de la nature de la série en fonction de α .

Notons tout d'abord que le terme général de cette série est à valeurs positives. Soit $n \in \mathbb{N}^*$. Le calcul donne $\sqrt[n]{u_n} = \frac{2}{n^{\frac{2}{n}}} \sin^2(\alpha)$. Or $n^{\frac{2}{n}} = \exp^{\left(2\frac{\ln(n)}{n}\right)}$.

On $a \lim_{n \to \infty} \frac{\ln(n)}{n} = 0$, $donc \lim_{n \to \infty} n^{\frac{2}{n}} = 1$ et par suite $\lim_{n \to \infty} \sqrt[n]{u_n} = 2\sin^2(\alpha)$. D'après le critère de Cauchy, la série $\sum u_n$ converge si $2\sin^2(\alpha) < 1$, c'est à dire si $\alpha \in]0, \frac{\pi}{4}[$.

D'après le critère de Cauchy, la série $\sum u_n$ diverge si $2\sin^2(\alpha) > 1$, c'est à dire si $\alpha \in]\frac{\pi}{4}, \frac{\pi}{2}[$.

 $Si\ 2\sin^2(\alpha) = 1$, (c'est à dire $\alpha = \pi/4$), alors $u_n = \frac{1}{n^2}$ pour tout $n \in \mathbb{N}$ et la série converge en vertu du critère de Riemann.

Exercice 2. Montrer que la série de terme général $u_n = \frac{1}{n(n+1)(n+2)}$, $n \in \mathbb{N}^*$ converge et calculer sa somme.

Le calcul donne $u_n = \frac{1}{2n} - \frac{1}{n+1} + \frac{1}{2(n+2)} = \frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+1} \right) - \frac{1}{2} \left(\frac{1}{n+1} - \frac{1}{n+2} \right)$ pour tout $n \in \mathbb{N}^*$.

On reconnaît deux sommes téléscopiques, ce qui permet d'écrire, pour tout $n \in \mathbb{N}^*$:

$$\sum_{k=1}^{n} u_k = \frac{1}{2} \left(1 - \frac{1}{n+1} \right) - \frac{1}{2} \left(\frac{1}{2} - \frac{1}{n+2} \right) ,$$

d'où l'on tire $\lim_{n\to\infty} u_n = 1/4$.

Exercice 3. Pour tout $n \in \mathbb{N}^*$, on pose $E_n = \sum_{k=1}^n \frac{1}{k}$.

1. A l'aide d'un encadrement série/intégrale, montrer que pour tout entier $n \ge 1$,

$$\ln(n+1) \le E_n \le 1 + \ln(n),$$

et en déduire un équivalent de E_n lorsque n tend vers $+\infty$.

Pour tout entier $k \ge 1$ et tout $t \in [k, k+1]$, on a $\frac{1}{k+1} \le t \le \frac{1}{k}$. En intégrant entre k et k+1, on a donc $\int_{k}^{k+1} \frac{1}{t} dt \leq \frac{1}{k}$, cet un calcul similaire donne $\frac{1}{k} \leq \int_{k-1}^{k} \frac{1}{t} dt$ pour tout $k \geq 2$.

Soit $n \ge 1$. En sommant la première inégalité de k = 1 à k = n, on obtient :

$$\ln(n+1) = \int_{1}^{n+1} \frac{1}{t} dt \le \sum_{k=1}^{n} \frac{1}{k} = E_n,$$

ce qui donne la première inégalité. Ensuite, en sommant la seconde inégalité de k=2 à k=n, on a:

$$E_n - 1 = \sum_{k=2}^n \frac{1}{k} \le \int_1^n \frac{1}{t} dt = \ln(n),$$

d'où l'on tire l'inégalité $\ln(n+1) \le E_n \le 1 + \ln(n)$. Par suite, pour tout $n \ge 2$, $\ln(n) > 0$ et on a:

$$\frac{\ln(n+1)}{\ln(n)} \le \frac{E_n}{\ln(n)} \le 1 + \frac{1}{\ln(n)},$$

et on conclut avec le théorème d'encadrement.

2. Pour tout $n \in \mathbb{N}^*$, on pose $u_n = E_n - \ln(n)$. Montrer que la suite $(u_n)_{n \in \mathbb{N}^*}$ est décroissante, puis qu'elle converge vers un réel γ compris entre 0 et 1. La constante γ est appelée constante d'Euler. Indication : pour la décroissance de (u_n) , on pourra admettre l'inégalité $\frac{1}{1+x} \leq \ln(1+1/x)$ pour x > 0.

D'après ce qui précède, on a, pour tout $n \in \mathbb{N}$:

$$0 \le \ln(n+1) - \ln(n) \le E_n - \ln(n) \le 1$$
,

et donc la suite (u_n) est minorée par 0 et majorée par 1. Considérons à présent $n \in \mathbb{N}^*$. On a:

$$u_{n+1} - u_n = (E_{n+1} - \ln(n+1)) - (E_n - \ln(n))$$

$$= \frac{1}{n+1} - (\ln(n+1) - \ln(n))$$

$$= \frac{1}{n+1} - \ln(1+1/n)$$

$$< 0$$

Ainsi, la suite (u_n) est décroissante. Etant minorée par 0 et majorée par 1, on en déduit qu'elle converge vers un réel $\gamma \in [0,1]$.

- 3. Pour tout n∈ N*, on pose w_n = u_{n+1} u_n. Montrer que la série de terme général w_n converge.
 Soit n ≥ 2. On a S_n = ∑_{k=1}ⁿ w_k = ∑_{k=1}ⁿ (u_{k+1} u_k) = u_{n+1} u₁ = u_{n+1} 1. Or nous venons de voir que la suite (u_n) converge vers γ. On en déduit que la suite des sommes partielles (S_n) converge vers γ 1. Ainsi, la série de terme général w_n converge et sa somme vaut ∑_{k=1}[∞] w_k = γ 1.
- 4. En déduire que

$$\gamma = 1 + \sum_{n=2}^{+\infty} \left[\frac{1}{n} - \ln \left(\frac{n}{n-1} \right) \right].$$

2

Soit $n \geq 2$. On écrit :

$$S_{n-1} = u_n - u_1 = \sum_{k=1}^{n-1} w_k = \sum_{k=1}^{n-1} (u_{k+1} - u_k)$$

$$= \sum_{k=1}^{n-1} ((E_{k+1} - \ln(k+1)) - (E_k - \ln(k)))$$

$$= \sum_{k=1}^{n-1} ((E_{k+1} - E_k) - \frac{\ln(k+1)}{\ln(k)})$$

$$= \sum_{k=1}^{n-1} (\frac{1}{k+1} - \frac{\ln(k+1)}{\ln(k)})$$

$$= \sum_{k=2}^{n} (\frac{1}{k} - \frac{\ln(k)}{\ln(k-1)})$$

Or nous venons de voir que (S_n) converge vers $\gamma - u_1 = \gamma - 1$. On peut donc passer à la limite $n \to +\infty$ dans l'égalité précédente, ce qui donne le résultat.

Exercice 4. Pour $x \in \mathbb{R}$ on définit

$$M(x) := \begin{pmatrix} -1 & 2x & -2x+1 \\ x+3 & 4 & x-1 \\ 2 & -4x & 6x \end{pmatrix}$$

1. Calculer $\det(M(x))$ en fonction de x. Donner le résultat sous forme factorisée.

Avec l'operation de ligne $L_3 \leftarrow L_3 + 2L_1$ on transforme M(x) dans la matrice trangulaire par blocs

$$M'(x) = \begin{pmatrix} -1 & 2x & -2x+1 \\ x+3 & 4 & x-1 \\ 0 & 0 & 2x+2 \end{pmatrix}.$$

En utilisant que le determinat d'une matrice triangulaire par blocs est le produit de determinants des blocs, et la formule du determinant d'une matrice de taille 2 on à

$$\det(M(x)) = \det(M'(x)) = (2x+2)(-2x^2 - 6x - 4) = -4(x+1)^2(x+2).$$

2. Calculer le rang de M(x) en fonction de x.

On sait que le rang de M(x) est 3 si et seulement si $det(M(x)) \neq 0$. Donc le rang de M(x) est 3 pour x different de -1 et -2. On sait aussi que le rang de M(x) est le meme que celui de M'(x). Pour x = -1, la première et la troisieme colonne de M'(-1) sont

$$\begin{pmatrix} -1\\2\\0 \end{pmatrix} \quad et \quad \begin{pmatrix} 3\\-2\\0 \end{pmatrix}$$

qui sont non colineaires. Donc $rg(M(-1)) = rg(M'(-1)) \ge 2$. Mais det(M(-1)) = 0, donc $rg(M(-1)) \le 2$. On en deduit que rg(M(-1)) = 2

Pour x = -2, en utilisant que la premiere et troisieme colonne de M'(-2) sont non colineaires on deduit par le meme argument que rg(M(-2)) = 2.

Exercice 5. Soit $\tau, \rho \in S_9$ les permutations suivantes :

$$\tau = (123...89)$$
 $\rho = (123) \circ (361) \circ (813)$

1. Décomposer ρ comme produit de cycles disjoints.

Par calcul direct on $a: \rho(1)=6, \ \rho(6)=2, \ \rho(2)=3, \ \rho(3)=8, \ \rho(8)=1$ qui nous fait un premier cycle de la decomposition de ρ . On a aussi que $\rho(4)=4, \ \rho(5)=5, \ \rho(7)=7$ et $\rho(9)=9$. Donc $\rho=(16238)$.

2. Calculer la signature de $\rho \circ \tau$ et $\tau \circ \rho$.

Vu que τ et un 9-cycle, $\varepsilon(\tau) = (-1)^{9-1} = 1$. Par le même argument $\varepsilon(\rho) = 1$. Enfin on a que $\varepsilon(\tau \circ \rho) = \varepsilon(\rho \circ \tau) = \varepsilon(\rho)\varepsilon(\tau) = 1$.

3. Ecrire τ comme un produit de transpositions.

Si on defini $\tau' = (19) \circ (18) \circ \cdots \circ (13) \circ (12)$, on note facilement que pour tout $i = 1, \ldots, 8$ $\tau'(i) = i + 1$ et $\tau'(9) = 1$. Donc $\tau = \tau'$.

4

Exercice 6. Soit ϕ l'endomorphisme de $\mathbb{R}_3[X]$ défini par

$$\phi(P) = P(0) + P'(1)X + P''(2)X^2 \quad , \forall P \in \mathbb{R}_3[X].$$

Dire, et justifier avec une démonstration, si les espaces suivants sont stables par ϕ .

1. Vect(X).

Stable. Vu que $\operatorname{Vect}(X)$ est engendré par X, $\operatorname{Vect}(X)$ est stable par ϕ si et seulement si $\phi(X) \in \operatorname{Vect}(X)$. Mais $\phi(X) = X$. Donc $\operatorname{Vect}(X)$ est stable.

2. $Vect(X^2)$.

Non-stable. Vu que $\phi(X^2) = 2X + 2X^2 \not\in \operatorname{Vect}(X^2)$, cet espace n'est pas stable.

3. $\mathbb{R}_2[X]$.

Stable. L'image de ϕ est évidemment incluse dans $\mathbb{R}_2[X]$, donc $\mathbb{R}_2[X]$ est stable.

4. $F := \{ P \in \mathbb{R}_3[X] : P(0) = 0 \}.$

Stable. Soit $P \in F$. Par definition de F on a que $\phi(P) = P'(1)X + P''(2)X^2$ et donc $\phi(P)(0) = 0$. On vien de prouver que pour tout $P \in F$, $\phi(P) \in F$, donc F est stable.