Feuille d'exercices nº 4

Valeurs propres, sous-espaces propres, polynôme caractéristique

Exercice 1. Déterminer le polynôme caractéristique, le spectre et les sous-espaces propres de chacune des matrices suivantes, que l'on considérera successivement comme matrices réelles puis complexes :

$$A = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad ; \quad B = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix} \quad ; \quad C = \begin{pmatrix} 2 & 1 \\ -1 & 4 \end{pmatrix}$$

$$D = \begin{pmatrix} 5 & 0 & 1 \\ 1 & 1 & 0 \\ -7 & 1 & 0 \end{pmatrix} \quad ; \quad E = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \quad ; \quad F = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

Exercice 2. Étant donné un polynôme unitaire $X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0$, sa "matrice compagnon" est la matrice

$$\begin{pmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \cdots & 0 & -a_2 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \cdots & 1 & -a_{n-1} \end{pmatrix}.$$

Montrer que tous les espaces propres d'une matrice compagnon sont des droites.

Exercice 3. Soient $n, m \in \mathbf{N}^*$.

- 1. On considère deux matrices $A, B \in \mathcal{M}_n(\mathbf{C})$.
 - (a) Montrer que si A ou B est inversible, alors les matrices AB et BA sont semblables. Donner un exemple montrant que si ni A, ni B ne sont inversibles, alors il se peut que AB et BA ne soient pas semblables.
 - (b) On définit par blocs deux matrices $C = \begin{pmatrix} XI_n & A \\ B & I_n \end{pmatrix}$ et $D = \begin{pmatrix} I_n & 0 \\ -B & XI_n \end{pmatrix}$. Calculer les produits CD et DC et en déduire que det $C = \chi_{AB} = \chi_{BA}$.
- 2. Dans cette question, on suppose que $A \in \mathcal{M}_{m,n}(\mathbf{C})$ et $B \in \mathcal{M}_{n,m}(\mathbf{C})$. En faisant des calculs similaires à ceux de la question précédente, trouver une relation entre χ_{AB} et χ_{BA} .

Exercice 4. Déterminer le spectre et les espaces propres de chacun des endomorphismes suivants :

- 1. L'endomorphisme u_1 de $\mathbf{R}^{\mathbf{N}}$ défini par : si $(a_n) \in \mathbf{R}^{\mathbf{N}}$, alors $u_1((a_n))$ est la suite (b_n) définie par $b_n = a_{n+1}$.
- 2. L'endomorphisme u_2 de $\mathscr{C}^{\infty}(\mathbf{R},\mathbf{R})$ défini par $u_2(f)=f'$.
- 3. L'endomorphisme u_3 de $\mathscr{C}^{\infty}(\mathbf{R},\mathbf{R})$ défini par $u_3(f)=f''$.
- 4. L'endomorphisme u_4 de $\mathscr{C}^{\infty}_{2\pi}(\mathbf{R},\mathbf{R})$, espace des fonctions infiniment dérivables et 2π -périodiques, défini par $u_4(f) = f''$.

Exercice 5. Soit E un \mathbb{R} -espace vectoriel de dimension finie n et soit u un endomorphisme de E de rang 1.

- 1. On note v la restriction de u à $\ker u$. Que vaut χ_v ? En déduire qu'il existe un et un seul réel α tel que $\chi_u = X^{n-1}(X \alpha)$.
- 2. Montrer que $u \circ u = \alpha u$.
- 3. Dans cette question, on suppose que $E = \mathbf{R}^n$ et que u est l'endomorphisme dont la matrice dans la base canonique ne comporte que des 1. Que vaut χ_u ? Étant donnés deux réels a et b, que vaut le déterminant de la matrice carrée $M \in \mathcal{M}_n(\mathbf{R})$ dont les éléments diagonaux valent b et tous les autres valent a?

Exercice 6. Soit E un espace vectoriel sur \mathbf{R} de dimension finie n, soit α un réel et soit $u \in \mathcal{L}(E)$ vérifiant l'égalité $u \circ u = \alpha u$.

- 1. Rappeler la démonstration du fait "bien connu" suivant : si $p \in \mathcal{L}(E)$ vérifie $p \circ p = p$, alors $\ker p$ et $\operatorname{Im} p$ sont supplémentaires dans E et p est le projecteur sur $\operatorname{Im} p$ parallèlement à $\ker p$.

 Indication : pour tout $x \in E$, on peut écrire x = (x p(x)) + p(x).
- 2. Dans cette question, on suppose que $\alpha \neq 0$. En posant $p = \frac{1}{\alpha}u$, montrer que le spectre de u possède au plus deux éléments, que le polynôme caractéristique de u est scindé et que la dimension de chaque espace propre est égale à la multiplicité de la valeur propre associée dans le polynôme caractéristique.
- 3. Dans cette question, on suppose que α = 0. Déterminer le polynôme caractéristique de u.

 Indication : on pourra considérer une matrice A de u dans une base quelconque de E et montrer que si A possède une valeur propre, elle est nécessairement nulle.

Exercice 7. Soit $n \in \mathbb{N}^*$. Pour toute racine n-ième de l'unité ω et pour tout $(a_0, a_1, \dots, a_{n-1}) \in \mathbb{C}^n$, on introduit les notations suivantes :

$$X_{\omega} = \begin{pmatrix} 1 \\ \omega \\ \omega^{2} \\ \vdots \\ \omega^{n-1} \end{pmatrix} \quad \text{et} \quad M(a_{0}, a_{1}, \dots, a_{n-1}) = \begin{pmatrix} a_{0} & a_{1} & \cdots & a_{n-1} \\ a_{n-1} & a_{0} & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{1} \\ a_{1} & \cdots & a_{n-1} & a_{0} \end{pmatrix}.$$

Une telle matrice M est appelée une "matrice circulante".

- 1. Soit $(a_0, a_1, \dots, a_{n-1}) \in \mathbf{C}^n$. Montrer que chaque vecteur X_ω est un vecteur propre de $M(a_0, a_1, \dots, a_{n-1})$ et préciser la valeur propre associée en utilisant le polynôme $P = a_0 + a_1 X + \dots + a_{n-1} X^{n-1}$.
- 2. En considérant la matrice $M(0,1,0,\ldots,0)$, montrer que la famille $(X_{\omega})_{\omega\in\mathbf{U}_n}$ est une base de $\mathcal{M}_{n,1}(\mathbf{C})$.
- 3. Soit $(a_0, a_1, \ldots, a_{n-1}) \in \mathbf{C}^n$ et $M = M(a_0, a_1, \ldots, a_{n-1})$. On note u l'endomorphisme de $\mathcal{M}_{n,1}(\mathbf{C})$ défini par u(X) = MX. Quelles sont les matrices respectives de u dans la base canonique et dans la base $(X_{\omega})_{\omega \in \mathbf{U}_n}$? En déduire le déterminant et le polynôme caractéristique de M.

Exercice 8. Soit $n \in \mathbb{N}^*$.

- 1. Soit $u \in \mathcal{L}(\mathbf{C}^n)$ qui n'est pas une homothétie. Montrer qu'il existe un sous-espace non trivial de \mathbf{C}^n (c'est-à-dire ni égal à $\{0\}$, ni égal à \mathbf{C}^n) qui est stable par tous les endomorphismes qui commutent avec u.
- 2. Soit $u \in \mathcal{L}(\mathbf{C}^n)$ qui commute avec tous les éléments de $\mathcal{L}(\mathbf{C}^n)$. En utilisant la question 1, montrer que u est une homothétie.
- 3. Soit $A \in \mathcal{M}_n(\mathbf{R})$ qui commute avec tous les éléments de $\mathcal{M}_n(\mathbf{R})$. Montrer que A commute avec tous les éléments de $\mathcal{M}_n(\mathbf{C})$, puis en déduire que A est une matrice scalaire, c'est-à-dire une matrice de la forme λI_n , avec $\lambda \in \mathbf{R}$.
- 4. Le résultat de la question 2 reste-t-il vrai si l'on y remplace C par R? Et pour la question 1?