L1 Math-Info

UE : Algèbre 2

Examen final - 10 mai 2023, 14h

Durée 2H

Avertissement : Une attention particulière sera prêtée à la qualité de la rédaction. Sauf mention contraire, toute réponse doit être justifiée. Tous les appareils électroniques sont interdits. Le barème est donné à titre indicatif.

Exercice 1. (6 pts)

Soient
$$A = \begin{pmatrix} 4 & -8 & 7 \\ 0 & 0 & 2 \\ -2 & 4 & -1 \end{pmatrix}$$
 et $P = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix}$.

- 1. (2.5 pts) Montrer que P est inversible et déterminer P^{-1} .
- 2. (1 pt) Calculer la matrice $D = P^{-1}AP$.
- 3. (0.5 pts) Pour tout $n \in \mathbb{N}^*$, exprimer (sans preuve) la matrice D^n .
- 4. (1 pt) Démontrer par récurrence que pour tout $n \in \mathbf{N}^*$, $A^n = PD^nP^{-1}$.
- 5. (1 pt) Calculer A^n pour tout $n \in \mathbf{N}^*$.

Exercice 2. (10 pts)

On note $\mathcal{E} = (e_1, e_2, e_3)$ la base canonique de \mathbf{R}^3 et f l'endomorphisme de \mathbf{R}^3 tel que :

$$f(e_1) = -2e_1 + 2e_3$$
, $f(e_2) = 3e_2$, $f(e_3) = -4e_1 + 4e_3$.

- 1. (0.5 pts) Déterminer la matrice $A \in \mathcal{M}_3(\mathbf{R})$ représentative de f dans la base \mathcal{E} . Pour les étudiants de l'amphi d'info : c'est-à-dire déterminer la matrice $A \equiv [f]_{\mathcal{E}}$.
- 2. (1.5 pt) Déterminer une base de $\ker(f)$.
- 3. (0.5 pts) f est-elle injective?
- 4. (0.5 pts) Déterminer le rang de f.
- 5. (0.5 pts) f est-elle surjective?
- 6. (1 pt) Déterminer une base de Im(f).
- 7. Soit $G = \{(x, y, z) \in \mathbf{R}^3 \mid x 2y + z = 0\}.$
 - (a) (1 pt) Montrer que G est un sous-espace vectoriel de \mathbb{R}^3 .
 - (b) (1 pt) Déterminer une base de G.
 - (c) (1 pt) Démontrer que $\ker(f)$ et G sont supplémentaires dans \mathbb{R}^3 .
- 8. Soit v_1 , v_2 et v_3 les trois vecteurs de \mathbb{R}^3 définis par :

$$v_1 = (2, 0, -1), v_2 = (1, 0, -1), v_3 = (0, 1, 0).$$

- (a) (1.5 pts) Montrer que $\mathcal{B} := (v_1, v_2, v_3)$ est une base de \mathbb{R}^3 .
- (b) (0.5 pts) Calculer $f(v_1)$, $f(v_2)$ et $f(v_3)$.
- (c) (0.5 pts) Déterminer $B \in \mathcal{M}_3(\mathbf{R})$ la matrice représentative de f dans la base \mathcal{B} (c'est-à-dire $B \equiv [f]_{\mathcal{B}}$ avec les notations de l'amphi d'info).

Exercice 3. (5 pts) On note $\mathcal{E}=(1,X,X^2)$ la base canonique de $\mathbf{R}_2[X]$. On considère l'application $\Psi\colon\mathbf{R}_2[X]\to\mathbf{R}_2[X],\ P(X)\longmapsto XP'(X)-P(X+1)$.

- 1. (1 pt) Montrer que Ψ est une application linéaire.
- 2. (1 pt) Déterminer A la matrice représentative de Ψ dans la base \mathcal{E} (c'est à dire $A \equiv [\Psi]_{\mathcal{E}}$ avec les notations de l'amphi d'info).
- 3. (1.5 pts) Déterminer $\ker(\Psi)$.
- 4. (0.5 pts) Quel est le rang de Ψ ?
- 5. (1 pt) Donner une base de $Im(\Psi)$.