Université Claude Bernard - Lyon 1

Cursus préparatoire: Fondamentaux des mathématiques 2

Feuille nº 9: Applications linéaires

Exercice 1 (*) Parmi les applications suivantes, lesquelles sont linéaires?

1.
$$f_1: \mathbf{R}^3 \to \mathbf{R}^3$$
, $f_1(x, y, z) = (x + 1, y + 1, z + 1)$.

2.
$$f_2: \mathbf{R}^3 \to \mathbf{R}, f_2(x, y, z) = x + y + z.$$

3.
$$f_3: \mathbf{R}^3 \to \mathbf{R}, f_3(x, y, z) = xyz.$$

4.
$$f_4: \mathbf{R}^2 \to \mathbf{R}^2$$
, $f_4(x, y) = (\sin x, \cos y)$.

5.
$$f_5: \mathbf{R}^3 \to \mathbf{R}^3, f_5(x, y, z) = (y, z, z).$$

6.
$$f_6: \mathbf{R}^3 \to \mathbf{R}^3$$
, $f(x, y, z) = (10, 11, 12)$.

7.
$$f_7: \mathbf{R}^3 \to \mathbf{R}, f(x, y, z) = x^2 + y^2 + z^2$$
.

8.
$$f_8: \mathbf{R} \to \mathbf{R}^3$$
, $f(x) = (x, 2x, -3x)$.

Exercice 2 (*) Montrer que les applications suivantes sont linéaires :

1.
$$\varphi_1 : \mathbf{R}_2[X] \to \mathbf{R}_2[X], \ \varphi_1(P) = (2X+1)P(X) - (X^2-1)P'(X)$$

2.
$$\varphi_2: \mathbf{R}^{\mathbf{N}} \to \mathbf{R}^2, \, \varphi_2((u_n)_{n \geq 0}) = (u_0, u_1).$$

3.
$$\varphi_3: \mathbf{C}^{\mathbf{N}} \to \mathbf{C}^{\mathbf{N}}, \ \varphi_3((u_n)_{n \geqslant 0}) = (u_{n+1} - u_n)_{n \geqslant 0}.$$

4.
$$\varphi_4: C^0(\mathbf{R}, \mathbf{R}) \to C^0(\mathbf{R}, \mathbf{R}), \ \varphi_4(f) = \left[x \mapsto \frac{f(x) + f(-x)}{2}\right].$$

5.
$$\varphi_5: C^0([0,1], \mathbf{R}) \to \mathbf{R}, \ \varphi_5(f) = \int_0^1 \frac{f(t)}{1+t^2} dt.$$

Exercice 3 (*) Soit f l'application de \mathbb{R}^2 dans \mathbb{R}^5 définie pour tous α, β réels par

$$f(\alpha, \beta) = (\alpha + 2\beta, \alpha, \alpha + \beta, 3\alpha + 5\beta, -\alpha + 2\beta).$$

- 1. Montrer que f est une application linéaire.
- 2. Déterminer $\ker f$ et préciser sa dimension.
- 3. Déterminer Im f et préciser sa dimension.

Exercice 4

- 1. Déterminer l'ensemble des applications linéaires surjectives de \mathbb{C}^4 sur \mathbb{C}^6 .
- 2. Déterminer l'ensemble des applications linéaires injectives de \mathbb{C}^4 dans \mathbb{C}^3 .
- 3. Déterminer l'ensemble des applications linéaires injectives de \mathbb{C} dans \mathbb{C}^3 .

Semestre de printemps 2021-2022 Exercice 5 (*) On note $E = C^{\infty}(\mathbf{R}, \mathbf{R})$ et on y définit les applications φ, ψ par

$$\varphi(f) = f' \quad \text{et} \quad \psi(f) = \left[x \mapsto \int_0^x f(t) \, \mathrm{d}t \right].$$

- 1. Montrer que φ et ψ sont des endomorphismes de E, puis déterminer $\varphi \circ \psi$ et $\psi \circ \varphi$.
- 2. Les endomorphismes φ et ψ sont-ils injectifs? surjectifs?

Exercice 6 (*) Dans \mathbb{R}^3 , on considère les vecteurs

$$u = (2, 1, -1), v = (1, -1, 3), w = (3, 3, -5).$$

On note F le sous-espace vectoriel engendré par (u, v, w).

- 1. Déterminer une base de F.
- 2. Soit $f: \mathbf{R}^3 \to \mathbf{R}^3$ l'application définie pour des réels α, β, γ par

$$f(\alpha, \beta, \gamma) = (3\alpha + \gamma, \alpha - \beta + \gamma, -3\alpha - 3\beta + \gamma).$$

Montrer que f est un endomorphisme de \mathbb{R}^3 .

- 3. Déterminer une base de ker f et une base de Im f. Préciser le rang de f.
- 4. A-t-on $\mathbf{R}^3 = \ker f \oplus \operatorname{Im} f$?
- 5. Les vecteurs u, v, w sont-ils des éléments de Im f?
- 6. Déterminer une base et la dimension de $F \cap \text{Im } f$.

Exercice 7 Dans chacun des cas suivants, déterminer le noyau et l'image de l'application linéaire $q: E \to E$.

- 1. $E = \mathbf{R}^3$, g(x, y, z) = (x y, -x + y, 0).
- 2. E est un espace vectoriel de base (e_1, e_2, e_3) , et g est l'unique application linéaire qui vérifie $q(e_1) = e_2, q(e_2) = e_3$ et $q(e_3) = e_1 + e_2$.

Exercice 8 Soit $u \in \mathcal{L}(\mathbf{R}^3)$ défini par u(a,b,c) = (-b+2c,2a-3b+4c,a-b+c), et soit v = u + id.

- 1. Déterminer une base de $\ker u$.
- 2. Quel est le rang de u? Déterminer une représentation cartésienne de $\operatorname{Im} u$.
- 3. Quel est le rang de v? Quelle est la dimension de $\ker v$?
- 4. Montrer que pour tout $x \in \ker v$, on a u(x) = -x. En déduire que $\ker v \subset \operatorname{Im} u$, puis que $\ker v = \operatorname{Im} u$.
- 5. Montrer que $\ker u \cap \ker v = \{0\}.$
- 6. Montrer que pour tout $x \in \ker u$, on a $u^3(x) = u(x)$, et que pour tout $x \in \ker v$, on a $u^3(x) = u(x)$. On rappelle que par définition, u^3 est égal à $u \circ u \circ u$.
- 7. Montrer que $u^3 = u$.

Exercice 9 Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par f(x, y, z) = (-x+2y+z, y+3z, 2x-2y+4z).

- 1. Donner une base de l'image et une base du noyau de f. Décrire l'image de f par un système d'équations linéaires.
- 2. Soit E le sous-espace vectoriel de \mathbb{R}^3 d'équation x=y. Quelle est la dimension de E? Donner une base de f(E) et une base de $f^{-1}(E)$.

Exercice 10 (*) Soit $u: \mathbf{R}_2[X] \to \mathbf{R}_2[X]$ définie par $u(P) = (1 - X^2)P' + 2XP$.

- 1. Vérifier que u est bien à valeurs dans $\mathbf{R}_2[X]$.
- 2. Montrer que u est une application linéaire. Est-elle injective? surjective?
- 3. Soit $P_1(X) = (X+1)^2$, $P_2(X) = X^2 1$ et $P_3(X) = (X-1)^2$. Vérifier que (P_1, P_2, P_3) est une base de $\mathbf{R}_2[X]$. Exprimer $u(P_1)$, $u(P_2)$ et $u(P_3)$ comme combinaisons linéaires de P_1 , P_2 et P_3 . En déduire la matrice de u dans la base (P_1, P_2, P_3) .

Exercice 11 (*) Soit a_0, \ldots, a_n des réels distincts et $\varphi \colon \mathbf{R}_n[X] \to \mathbf{R}^{n+1}$ définie par

$$\varphi(P) = (P(a_0), P(a_1) \dots, P(a_n)).$$

- 1. Montrer que φ est injective.
- 2. Montrer que pour tout $(x_0, \ldots, x_n) \in \mathbf{R}^{n+1}$, il existe un unique polynôme $P \in \mathbf{R}_n[X]$ tel que $P(a_i) = x_i$ pour tout $i \in \{0, \ldots, n\}$.
- 3. Comment montrer que pour tout $(x_0, \ldots, x_n, y_0, \ldots, y_n) \in \mathbf{R}^{2n+2}$, il existe un unique polynôme $P \in \mathbf{R}_{2n+1}[X]$ tel que $P(a_i) = x_i$ et $P'(a_i) = y_i$ pour tout $i \in \{0, \ldots, n\}$?

Exercice 12 Soit $E = \mathbf{R}_n[X]$ et soient a_0, \dots, a_n des réels tous distincts.

- 1. Vérifier que pour tout $i, \varphi_{a_i}: P \mapsto P(a_i)$ est une forme linéaire sur E.
- 2. Montrer que la famille $(\varphi_0, \ldots, \varphi_n)$ est libre. On pourra, à un moment, utiliser le résultat de la question 2 de l'exercice précédent.
- 3. Montrer qu'il existe un unique $(\lambda_0, \dots, \lambda_n) \in \mathbf{R}^n$ tel que

$$\forall P \in E, \ \int_0^1 P(t) \, \mathrm{d}t = \sum_{i=0}^n \lambda_i P(a_i).$$

Exercice 13 Soit E un espace vectoriel de dimension finie et $u: E \to E$ une application linéaire.

- 1. Montrer que $\ker u \subset \ker(u^2)$ et $\operatorname{Im}(u^2) \subset \operatorname{Im} u$.
- 2. Montrer que $\ker u \oplus \operatorname{Im} u = E \Leftrightarrow \operatorname{Im} u \cap \ker u = \{0\}.$
- 3. Montrer que $\ker u \oplus \operatorname{Im} u = E \Leftrightarrow \operatorname{Im} u = \operatorname{Im} u^2 \Leftrightarrow \ker u = \ker u^2$.
- 4. Dire si Im u et ker u sont supplémentaires dans $E = \mathbf{R}^3$ dans les deux cas suivants : u(x, y, z) = (x 2y + z, x z, x 2y + z); u(x, y, z) = (2(x + y + z), 0, x + y + z).

Exercice 14 Soient E un k-espace vectoriel de dimension 3 et u un endomorphisme de E tel que $u^2 \neq 0$ et $u^3 = 0$.

- 1. Montrer que dim $\ker u$ ne peut être égal ni à 0, ni à 3.
- 2. En supposant que dim ker u=2, montrer que ker $u=\ker u^2$, puis que $u^2=0$.
- 3. Que vaut dim $\ker u$?

Exercice 15 Soit u un endomorphisme d'un espace E tel que $u^2 - 3u + 2 \operatorname{id} = 0$.

- 1. Montrer que u est inversible et exprimer u^{-1} en fonction de u.
- 2. Montrer que $E = \ker(u id) \oplus \ker(u 2id)$.

Exercice 16 Soit E un espace vectoriel de dimension n et u un endomorphisme de E tel que $u^{n-1} \neq 0$ et $u^n = 0$. On considère $x \in E$ tel que $u^{n-1}(x) \neq 0$. Montrer que la famille $(x, u(x), u^2(x), \ldots, u^{n-1}(x))$ est une base de E.