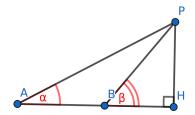
FEUILLES D'EXERCICES 9 : GÉOMÉTRIE EUCLIDIENNE (2)

Exercice 1 — On souhaite mesurer la hauteur d'un point P inaccessible par deux angles. Par visée, l'observateur mesure l'angle α , puis l'angle β après s'être éloigné de la distance horizontale AB. Quelle est la hauteur PH du point P?



Exercice 2 — Soit \mathscr{E} un espace affine euclidien de dimension 3. Soit ABC un triangle non plat contenu dans un plan \mathscr{P} de \mathscr{E} , et soit M un point de \mathscr{E} se projetant orthogonalement sur \mathscr{P} en un point H intérieur à ABC. On suppose en outre que tous les angles du triangle ABC sont aigus ou droits.

- 1. Démontrer l'inégalité $\widehat{HAB} \leqslant \widehat{MAB}$, avec égalité si et seulement si M = H.
- 2. En déduire l'inégalité

$$\widehat{AMB} + \widehat{BMC} + \widehat{CMA} \leqslant 2\pi$$
,

avec égalité si et seulement si M est dans le plan \mathscr{P} .

Exercice 3 [Aire euclidienne] — Soit \mathscr{E} un plan affine euclidien.

L'aire géométrique d'un triangle ABC est par définition le nombre réel positif

$$S_{ABC} = \frac{1}{2} \left| \det_{\mathscr{B}}(\overrightarrow{AB}, \overrightarrow{AC}) \right|$$

où ${\mathcal B}$ désigne une base orthonormée de $\overrightarrow{{\mathcal E}}$.

Si, de plus, le plan & est *orienté*, l'aire algébrique du triangle ABC est par définition

$$\mathscr{A}(ABC) = \frac{1}{2} \det_{\mathscr{B}}(\overrightarrow{AB}, \overrightarrow{AC}),$$

où ${\mathscr B}$ désigne maintenant une base orthonormée directe de $\overrightarrow{{\mathscr E}}$.

- 1. Justifier que l'aire géométrique (resp. algébrique) ne dépend pas du choix de la base orthonormée (resp. orthonormée directe) \mathscr{B} .
- 2. Si A' désigne le projeté orthogonal de A sur (BC), démontrer l'identité

$$S_{ABC} = \frac{1}{2}AA' \cdot BC.$$

3. Orientons le plan \mathscr{E} . Si le triangle ABC est non plat, démontrer que les coefficients barycentriques (α, β, γ) d'un point M de \mathscr{E} dans le repère affine (A, B, C) sont

$$\alpha = \frac{\mathscr{A}(MBC)}{\mathscr{A}(ABC)}, \quad \beta = \frac{\mathscr{A}(AMC)}{\mathscr{A}(ABC)} \quad \text{et} \quad \gamma = \frac{\mathscr{A}(ABM)}{\mathscr{A}(ABC)}.$$

Exercice 4 [Volume euclidien] — Soit & un espace affine euclidien de dimension 3 orienté.

Étant donné quatre points A, B, C et D, on définit le volume algébrique V (ABCD) du tétraèdre orienté ABCD par la formule

$$V(ABCD) = \frac{1}{6} det(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}).$$

Son volume géométrique V_{ABCD} est la valeur absolue du volume algébrique.

- 1. Vérifier que le parallélépipède construit sur la base (AB, AC, AD) est la réunion de six tétraèdres de même volume que ABCD et dont les intérieurs sont mutuellement disjoints.
- 2. Soit D' le projeté orthogonal de D sur le plan (ABC). Démontrer l'identité

$$V_{ABCD} = \frac{1}{3}DD' \cdot S_{ABC}.$$

3. Soit Π une pyramide régulière de côté 1 et soit T un tétraèdre régulier de côté 1. Déterminer une formule explicite pour V_{Π} et V_{T} puis vérifier la relation : $V_{\Pi} = 2V_{T}$.

Exercice 5 — Soit ABC un triangle non aplati dans un plan affine euclidien. On pose a = BC, b = AC et c = AB.

On a déjà vu que le *centre du cercle inscrit* I est le barycentre de A, B et C affectés des poids respectifs *a*, *b* et *c* (Feuille 8, exercice 3).

- 1. Soit H l'orthocentre et soit (α, β, γ) ses coordonnées barycentriques relativement au repère affine (A, B, C).
 - (i) Démontrer l'identité $-\beta c \cos(B) + \gamma b \cos(C) = 0$. (*Indication : considérer la projection orthogonale sur* (BC).)
 - (ii) Démontrer que H est le barycentre des points A, B et C affectés des poids respectifs $a\cos(B)\cos(C)$, $b\cos(A)\cos(C)$ et $a\cos(A)\cos(B)$.
- 2. Démontrer que le centre O du cercle circonscrit au triangle *ABC* est le barycentre des points A, B et C affectés des poids respectifs sin(2A), sin(2B) et sin(2C).

Indication: utiliser l'exercice 3 et le théorème de l'angle inscrit.

3. Discuter la position des points G, H, I et O par rapport au triangle ABC.