Analyse II: Intégration et approximation

MAT1009L / séquence 4 / printemps 2016

cours de Francis Clarke

CM3:

Les fonctions logarithmiques et exponentielles

Analyse II Calendrier 2016 (les mercredi) 27 janvier cours TD 3 février cours TD 10 février cours → DS 1 (en TD) 17 février cours TD (congé de travail intensif chez soi) 2 mars cours TD TD 9 mars cours TD (CC en commun, on ne participe pas) 16 mars partiel 1 (en amphi) 23 mars cours 30 mars cours TD 6 avril cours TD -DS 2 ? 13 avril cours TD (congé de travail intensif chez soi) 20 avril cours 27 avril cours TD partiel 2 ? 4 mai cours CC final : entre le 30 mai et le 8 juin

Un exemple qui donne lieu à une moralité Calculer $\int_{-1}^{1} \frac{dt}{t^4}$

D'où

2

On sait que
$$\int rac{dt}{t^4} \,=\, rac{-1}{3t^3} + C$$

$$\int_{-1}^{1} \frac{dt}{t^4} = \frac{-1}{3t^3} \Big|_{-1}^{1}$$

$$= \frac{-1}{3(1)^3} - \frac{-1}{3(-1)^3}$$

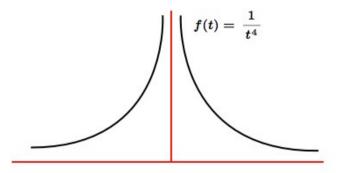
$$= -\frac{1}{3} - \frac{1}{3}$$

$$= -\frac{2}{3}$$

Pourtant, la fonction $1/t^4$ est positive!

Comment son intégrale peut-elle être négative?

En réalité, le calcul est absurde parce que la fonction n'est pas intégrable sur l'intervalle en question (en fait, elle explose...)



Rappel: Intégration par les primitives

Soit f une fonction continue sur [a,b], et soit h une fonction continûment dérivable sur un voisinage de [a,b] telle que h'=f. (h est une primitive pour f.) Alors

$$\int_a^b f(x) dx = h(b) - h(a).$$

(c'est un corollaire du théorème fondamental)

La moralité : en utilisant une primitive pour calculer une intégrale définie, il faut faire attention au comportement de la fonction sur l'intervalle sousjacent

Le cours à ce jour :

Définition et propriétés de l'intégrale Quelques applications de l'intégrale L'intégration par parties Changement de variable

La fonction In

7

Question historique

Il est 1650, ou 1780, ou 1850, ou 1900.

Ou encore, vous êtes lycéen en 1960.

Vous devez faire de nombreux calculs de type 133352/20022.

Comment faites-vous?

133352/20022 : calcul par division

directe 6,66027

20022 133352

120132

132200 120132

120680 120132

Réponse 6,6603

multiplications: 4

54800 divisions: 6 40044 soustractions: 4

abaissements: 4

147560

Vous disposez des logarithmes (communs) de tous les entiers entre 10000 et 99999 (c'est des nombres entre 4 et 5)

 $\log 133352 \approx \log 13335 + 1 = 5,12499$

log 20022 = 4,30151

log 133352 - log 20022 = 0,82348

= 4.82348-4

6,6601

antilog de 4,82348-4 = 66601 x 10⁻⁴ =

(précision au niveau 4 chiffres significatifs)

11

Utilisation des logarithmes

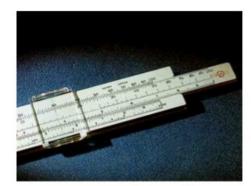
exemple d'un tableau :

.000 0.00000000		2.00	0.3010300	3.00	0.4771213	4.00	0.6020600	5.00	0.6989700	6.00	0.7781513	7.00	0.8450980	8.00	0.9131900	9.00	0.954242
.001 0.00043408		2.01	0.3031961	3.01	0.4785665	4.01	0.6031444	5.00	0.6998377	6.01	0,7788745	7.01	0.8457180	8.01	0.9036325	9.01	0.954724
.002 0.00086772		2.02	0.3053514	3.02	0.4500069	4.02	0.6042261	5.02	0.7007037	6.02	0.7795965	7.02	0.8463371	8.02	0.9941744	9.02	0.955286
.003 0.00130093		2.03	0.3074960	3.03	0.4814426	4.03	0.6053050	5.03	0.7015680	6.03	0.7803173	7.03	0.8469553	8.03	0.9947155	9.03	0.955687
.004 0.00173371		2.04	0.3096302	3.04	0.4828736	4.04	0.6063814	5.04	0.7024305	6.04	0.7810369	7.04	0.8475727	8.04	0.9052560	9.84	0.956168
.005 0.00216606		2.05	0.3117539	3.05	0.4542998	4.05	0.6074550	5.05	0.7033914	6.05	0.7817554	7.05	0.5481891	8.05	0.9057959	9.05	0.956649
.005 0.00259798		2.06	0.3138672	3.06	0.4857214	4.06	0.6065260	5.06	0.7041505	6.06	0.7824726	7.06	0.8488947	8.06	0.9063350	9.06	0.957129
.007 0.00302947		2.07	0.3159703	3,07	0.4871384	4.07	0.6095944	5.07	0.7050080	6.07	0.7831887	7.07	0.5494194	8.07	0.9068735	9.07	0.957603
.008 0.00346053		2.08	0.3180633	3.08	0.4895507	4.08	0.6106602	5.08	0.7058637	6.08	0.7839036	7.08	0.8500333	8.08	0.9974114	9.08	0.958085
.009 0.00389117		2.09	0.3201463	3.09	0.4899585	4.09	0.6117233	5.09	0.7067178	6.09	0.7846173	7.09	0.8506462	8.09	0.9079485	9.09	0.958563
.010 0.60432137	1.10 0.0413927	2.10	0.3222193	3.10	0.4913617	4.10	0.6127839	5.10	0.7075702	6.10	0.7853298	7.10	0.8512583	8.10	0.9054550	9.10	0.95904
.011 0.80475116	1.11 0.0453230	2.11	0.3242825	3.11	0.4927604	4.11	0.6138418	5.11	0.7084209	6.11	0.7860412	7.11	0.8518696	8.11	0.9090209	9.11	0.959538
012 0.00519051	1.12 0.0492180	2.12	0.3263359	3.12	0.4941546	4.12	0.6148972	5.12	0.7092700	6.12	0.7867514	7.12	0.8524800	8,12	0.9095560	9.12	0.55555
.013 0.80568945	1.13 0.0530784	2.13	0.3283796	3.13	0.4955443	4.13	0.6159501	5.13	0.7101174	6.13	0.7874605	7.13	0,8530895	8.13	0.9000905	9.13	0.96847
.014 0.00683795	1.14 0.0569049	2.14	0.3304138	3.14	0.4959295	4.14	0.6170003	5.14	0.7109631	6.14	0.7881684	7.14	0.8536982	8.14	0.9006244	9.14	0.96894
.015 0.00646604	1.15 0.0606978	2.15	0.3324385	3.15	0.4983106	4.15	0.6180451	5.15	0.7118072	6.15	0,7888751	7.15	0.8543060	8.15	0.9111976	9.15	0.961421
.016 0.00689371	1.16 0.0644580	2.16	0.3344538	3.16	0.4996871	4.16	0.6190933	5.16	0.7126497	6.16	0,7895807	7.16	0.8549130	8.16	0.9116902	9.16	0.961895
.017 0.80732895	1.17 0.0681859	2.17	0.3364597	3.17	0.5010593	4.17	0.6201361	5.17	0.7134905	6.17	0.7902852	7.17	0.8555192	8.17	0.9122221	9.17	0.962369
.018 0.00774778	1.18 0.0718820	2.18	0.3384565	3.18	0.5024271	4.18	0.6211763	5.18	0.7143296	6.18	0.7909885	7.18	0.8551244	8.18	0.9127533	9.18	0.962840
.019 0.00817418	1.19 0.0755470	2.19	0.3494441	3.19	0.5837907	4.19	0.6222340	5.19	0.7151674	6.19	0.7916906	7.19	0.8567289	8.19	0.9132839	9.19	0.963315
.020 0.00860017	1.20 0.0791812	2.20	0.3424227	3.20	0.5051500	4.20	0.6232493	5.20	0.7160033	6.20	0.7923917	7.20	0.8573325	8.20	0.9138139	9.20	0.963783
.021 0.00902574	1.21 0.0827854	2.21	0.3443923	3.21	0.5065050	4.21	0.6242821	5.21	0.7168377	6.23	0.7930916	7.21	0.8579353	8.21	0.9043432	9.21	0.964250
.022 0.00945090	1.22 0.0863598	2.22	0.3463530	3.22	0.5078559	4.22	0.6253125	5.22	0.7176705	6.22	0.7937904	7.22	0.8585372	8.22	0.9148718	9.22	0.964730
.023 0.00987563	1.23 0.0899051	2.23	0.3483049	3.23	0.5892825	4.23	0.6263404	5.23	0.7185017	6.23	0.7944880	7.23	0.8591383	8.23	0.9153998	9.23	0.965200

On a utilisé

$$\log(x/y) = \log x - \log y \quad (x, y > 0)$$

 $\log(10^{\pm n}x) = \pm n + \log x \quad (x > 0)$



Une règle à calcul

Comment définir/trouver/calculer de telles fonctions?

10

Leonhard Euler

1707-1783

A la recherche d'une fonction F (dérivable, inversible) qui satisfait

$$F(xy) = F(x) + F(y)$$
 $(x, y > 0)$
(et forcément $F(1) = 0$)

Considérons que y est une constante, et prenons d/dx dans la formule ; on obtient

$$F'(xy)y = F'(x)$$

On pose maintenant y = 1/x:

$$F'(x) = rac{F'(1)}{x}$$
 forcément $F'(1)
eq 0$

15

Supposons que

$$F(xy) = F(x) + F(y) \quad (x, y > 0)$$

$$y = 1 \Longrightarrow F(x) = F(x) + F(1)$$

$$\Longrightarrow F(1) = 0$$

$$F\left(y\frac{1}{y}\right) = F(1) = 0 = F(y) + F\left(\frac{1}{y}\right)$$

$$\Longrightarrow F\left(\frac{1}{y}\right) = -F(y)$$

 $F(x/y) = F(x) + F\left(\frac{1}{y}\right) = F(x) - F(y).$

Conclusion: la fonction doit satisfaire

$$F'(x) = \frac{c}{x} \quad \forall \, x > 0 \quad (c \neq 0)$$

Prenons c = 1. Alors, en vue du théorème fondamental, F n'a aucun choix que d'être la fonction

$$F(x) = \int_1^x \frac{1}{t} dt$$

qui est bien définie pour x > 0.

On donne un nom à la fonction:

On définit

$$\ln x := \int_1^x rac{1}{t} \, dt \quad (x>0)$$

(ell enn, logarithme naturel)

Est-ce qu'elle possède les propriétés recherchées?

La fonction $x \mapsto \ln x$ est dérivable de tout ordre (et donc continue) dans son domaine de définition, sur lequel elle est strictement croissante, avec $(\ln x)' = 1/x$.

 $\ln x := \int_1^x \frac{1}{t} \, dt$

Preuve: le théorème fondamental...

Théorème

$$\ln x := \int_1^x \frac{1}{t} dt$$

17

18

Propriétés du logarithme :

La fonction $x \mapsto \ln x$ est dérivable de tout ordre (et donc continue) dans son domaine de définition, sur lequel elle est strictement croissante, avec $(\ln x)' = 1/x$.

Elle satisfait

$$\ln 1 = 0$$
, $\lim_{x \downarrow 0} \ln x = -\infty$, $\lim_{x \to +\infty} \ln x = +\infty$

ainsi que

$$\ln(xy) = \ln x + \ln y$$

$$\ln(x/y) = \ln x - \ln y \quad \forall x, y > 0.$$

Théorème

$$\ln x := \int_1^x \frac{1}{t} dt$$

Propriétés du logarithme :

La fonction $x \mapsto \ln x$ est dérivable de tout ordre (et donc continue) dans son domaine de définition, sur lequel elle est strictement croissante, avec $(\ln x)' = 1/x$.

Elle satisfait

$$\ln 1 = 0$$
, $\lim_{x \downarrow 0} \ln x = -\infty$, $\lim_{x \to +\infty} \ln x = +\infty$

ainsi que

$$\ln(xy) = \ln x + \ln y$$

 $\ln(x/y) = \ln x - \ln y \quad \forall x, y > 0.$

La fonction $x \mapsto \ln x$ satisfait

$$\ln(xy) = \ln x + \ln y$$

$$\ln(x/y) = \ln x - \ln y \quad \forall x, y > 0.$$

On prouve maintenant que $\ln xy = \ln x + \ln y$, c'est à dire, l'identité

$$\int_1^{xy} \frac{1}{t} dt = \int_1^x \frac{1}{t} dt + \int_1^y \frac{1}{t} dt.$$

Fixons y, et prenons la dérivée en x des deux côtés. A gauche, comme à droite, on trouve 1/x. Donc les deux côtés diffèrent par une constante. Mais cette constante est forcément 0, puisque les deux côtés coïncident quand x = 1.

En prenant y = 1/x dans l'identité $\ln x y = \ln x + \ln y$, on trouve $\ln(1/y) = -\ln y$, ce qui implique par la suite $\ln(x/y) = \ln x - \ln y$.

Corollaire $\ln(x^n) = n \ln x \quad (n \in \mathbb{N}^*)$ Démonstration:

Le cas n = 2:

$$\ln(x^2) = \ln(x \times x) = \ln x + \ln x = 2 \ln x$$

Ensuite, récurrence sur n...

Corollaire $\ln(\sqrt[n]{x}) = \frac{1}{n} \ln x \quad (n \in \mathbb{N}^*)$ Démonstration:

Mettre $x = \sqrt[n]{x}$ dans la formule ci-dessus: on obtient

$$\ln x = n \ln \sqrt[n]{x},$$

ce qui est le résultat recherché.

Théorème

$$\ln x := \int_1^x \frac{1}{t} \, dt$$

Propriétés du logarithme :

La fonction $x \mapsto \ln x$ est dérivable de tout ordre (et donc continue) dans son domaine de définition, sur lequel elle est strictement croissante, avec $(\ln x)' = 1/x$.

Elle satisfait

$$\ln 1 = 0$$
, $\lim_{x \downarrow 0} \ln x = -\infty$, $\lim_{x \to +\infty} \ln x = +\infty$

ainsi que

$$\ln(xy) = \ln x + \ln y$$

$$\ln(x/y) = \ln x - \ln y \quad \forall x, y > 0.$$

23

La fonction $x \mapsto \ln x$ satisfait

$$\lim x := \int_{1}^{x} \frac{1}{t} dt$$

$$\lim \ln x = +\infty$$

$$\ln 1 = 0, \quad \lim_{x \downarrow 0} \ln x = -\infty,$$

par construction

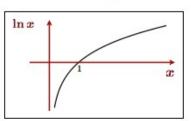
$$\ln\left(\frac{1}{2^n}\right) = \ln 1 - \ln(2^n)$$

$$= -n \ln 2$$

$$\to -\infty \text{ lorsque } n \to +\infty$$

$$\implies \lim_{n \to \infty} \ln x = -\infty$$

$$\begin{array}{l} \ln(2^n) \ = \ \ln(2 \times 2 \cdots \times 2) \\ = \ n \ln 2 \\ \to +\infty \ \text{lorsque} \ n \to +\infty \\ \Longrightarrow \ \lim_{x \to +\infty} \ln x \ = \ +\infty \end{array}$$



Théorème

$$\ln x := \int_1^x \frac{1}{t} \, dt$$

Propriétés du logarithme :

La fonction $x \mapsto \ln x$ est dérivable de tout ordre (et donc continue) dans son domaine de définition, sur lequel elle est strictement croissante, avec $(\ln x)' = 1/x$.

Elle satisfait

$$\ln 1 = 0$$
, $\lim_{x \downarrow 0} \ln x = -\infty$, $\lim_{x \to +\infty} \ln x = +\infty$

ainsi que

$$\ln(xy) = \ln x + \ln y$$

$$\ln(x/y) = \ln x - \ln y \quad \forall x, y > 0.$$

Proposition. Soit S_n la n-ième somme partielle de la série harmonique; c'est-à-dire,

$$S_n := \frac{1}{1} + \frac{1}{2} + \cdots + \frac{1}{n} \quad (n \geqslant 1).$$

Alors on a

$$\ln(n-1) \leq S_n \leq \ln n + 1 \quad (n \geqslant 2).$$

Corollaire. La série harmonique diverge; c-à-d:

$$\lim_{n\to\infty}S_n\to+\infty.$$

(C'est un célèbre théorème prouvé autrement par Jacques Bernoulli en 1689.)

Remarque:

Mais elle diverge très lentement:

$$\sum_{k=1}^{20} \frac{1}{k} \approx 3,60; \qquad \sum_{k=1}^{220} \frac{1}{k} \approx 5,98; \qquad \sum_{k=1}^{20220} \frac{1}{k} \approx 10,49.$$

27

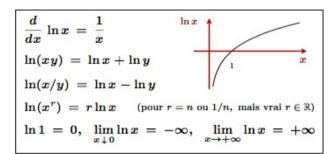
On veut $\ln(n-1) \leq S_n \leq \ln n + 1 \quad (n \geqslant 2)$

$$\ln(n-1) = \int_{1}^{n-1} \frac{1}{t} dt \leq \int_{1}^{n-1} \psi(t) dt$$

$$\leq \int_{1}^{n+1} \psi(t) dt$$

$$= 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \cdots + \frac{1}{n} = S_{n}$$
Et de façon analogue pour la borne supérieure de l'encadrement...

Résumé:



29

Unicité du logarithme Soit $F:(0,+\infty)\to\mathbb{R}$ une fonction dérivable telle que

$$F(xy) = F(x) + F(y) \quad \forall x, y \in \mathbb{R}_{+}^{*}. \tag{*}$$

Alors il existe une constante c telle que $F(x) = c \ln x \ \forall x \in \mathbb{R}_+^*$.

Démonstration. On prend y = 1 dans (*) pour voir que F(1) = 0. Ensuite, toujours dans (*), on fixe y, et on prend d/dx des deux côtés. Il en résulte:

$$y F'(xy) = F'(x).$$

On pose maintenant x = 1; on trouve

$$F'(y) = F'(1)/y \ \forall y > 0.$$

Il suit que

$$[F(y) - F'(1) \ln y]' = 0 \ \forall y > 0,$$

d'où, pour une constante k, on a

$$F(y) - F'(1) \ln y = k \ \forall y > 0.$$

En mettant y = 1 on trouve k = F(1) = 0, d'où le résultat, avec c = F'(1).

Remarque

Pour la fonction log, on voulait

$$\log(10^{\pm n}x) = \pm n + \log x \quad (x > 0)$$

$$\implies \log 10 = 1$$

Mais $\ln 10 > 1$; la fonction $\log x$ correspond à un choix différent de F'(1).

31

Remarque

Pour x > 0, on a

$$[\ln x]' = 1/x$$

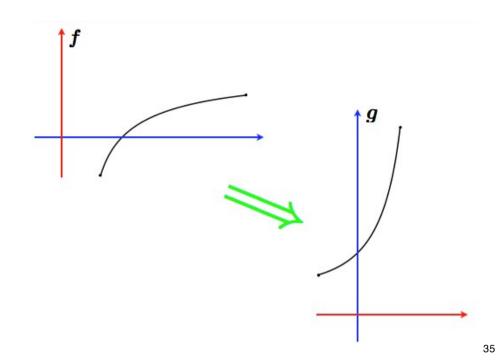
Pour x < 0, on trouve

$$[\ln(-x)]' = 1/(-x) \times (-1) = 1/x,$$

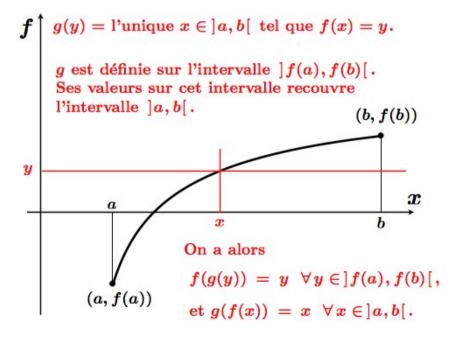
d'où la formule

$$[\ln|x|]' = 1/x \quad (x \neq 0)$$

Afin de retrouver une autre fonction célèbre, on étudie maintenant les fonctions réciproques, dans un cadre général



33



Théorème. Soit f une fonction continue sur l'intervalle [a,b], dérivable dans]a,b[, avec $f'(x)>0 \quad \forall x\in]a,b[$. Pour tout y dans l'intervalle [f(a),f(b)], on définit g(y) comme étant l'unique $x\in [a,b]$ tel que f(x)=y. Alors g est continue et strictement croissante sur [f(a),f(b)], ainsi que dérivable dans]f(a),f(b)[. On a

$$gig(f(x)ig) = x \,\, orall \, x \in \left[\, a,b\,
ight], \quad fig(g(y)ig) = y \,\, orall \, y \in \left[\, f(a),f(b)\,
ight],$$

et

$$g'(y) = \frac{d}{dy} g(y) = \frac{1}{f'(x)} = \frac{1}{f'(g(y))}.$$

Corollaire. Si de plus f est de classe C^m ($m \ge 1$) sur]a,b[, alors g est également de classe C^m sur]a,b[.

Démonstration partielle. On démontre que g est dérivable dans l'intervalle]f(a), f(b)[.

Soit $y \in]f(a), f(b)[$, et soit $x \in]a, b[$ l'unique point tel que f(x) = y (donc g(y) = x). (Ce point x existe par le théorème de la valeur intermédiaire.) Soit $k \neq 0$ suffisamment petit afin que $y + k \in]f(a), f(b)[$. Il existe un unique point h tel que $x + h \in]a, b[$ et f(x+h) = y+k. Un simple raisonnement par l'absurde montre que $h \to 0$ lorsque $k \to 0$. (Dans la cas contraire, il y aurait deux point différents dans [a,b] dont l'image par f serait g.)

On a alors

y +

y

(a, f(a))

$$\frac{g(y+k)-g(y)}{k} = \frac{x+h-x}{y+k-y} = \frac{h}{f(x+h)-f(x)} \to \frac{1}{f'(x)}$$

lorsque $k, h \to 0$. On déduit que g'(y) existe, et que

$$g'(y) = 1/f'(x) = 1/f'(g(y)).$$

Démonstration partielle. On démontre que g est dérivable dans l'intervalle]f(a), f(b)[.

Soit $y \in]f(a), f(b)[$, et soit $x \in]a, b[$ l'unique point tel que f(x) = y (donc g(y) = x). (Ce point x existe par le théorème de la valeur intermédiaire.) Soit $k \neq 0$ suffisamment petit afin que $y + k \in]f(a), f(b)[$. Il existe un unique point h tel que $x + h \in]a, b[$ et f(x+h) = y+k. Un simple raisonnement par l'absurde montre que $h \to 0$ lorsque $k \to 0$. (Dans la cas contraire, il y aurait deux point différents dans [a, b] dont l'image par f serait y.)

On a alors

$$\frac{g(y+k)-g(y)}{k} \ = \ \frac{x+h-x}{y+k-y} \ = \ \frac{h}{f(x+h)-f(x)} \ o \ \frac{1}{f'(x)}$$

lorsque $k, h \to 0$. On déduit que g'(y) existe, et que

$$g'(y) = 1/f'(x) = 1/f'(g(y)).$$

37

(b, f(b))

x + h

 $h \to 0$ lorsque $k \to 0$

 \boldsymbol{x}

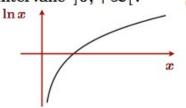
On a défini la fonction $x \mapsto \ln x$, qui envoie $]0, +\infty[$ sur \mathbb{R} .

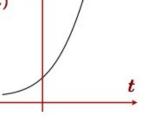
La fonction exponentielle $t\mapsto \exp t$ est définie comme étant la réciproque de la fonction ln. Donc

$$\exp t = x$$
, où x est l'unique point dans $]0, +\infty[$ qui satisfait $\ln x = t$.

Le domaine de définition de exp est donc la droite entière, et l'ensemble des valeurs de exp est précisément l'intervalle $]0,+\infty[$.

exp(t)





Théorème. La fonction $t \mapsto \exp t$ est dérivable de tout ordre. Elle est positive et strictement croissante, avec

$$\exp(\ln x) = x \quad \forall x \in \mathbb{R}_+^*,$$
 $\ln(\exp t) = t \quad \forall t \in \mathbb{R},$
 $(\exp t)' = \exp t.$

Elle satisfait de plus

$$\exp 0 \, = \, 1 \, , \quad \lim_{t \, \downarrow \, -\infty} \, \exp t \, = \, 0 \, , \quad \lim_{t \, \rightarrow \, +\infty} \, \exp t \, = \, +\infty$$

ainsi que

$$\exp(x+y) = (\exp x)(\exp y),$$
$$\exp(x-y) = (\exp x)/(\exp y) \ \forall x, y \in \mathbb{R}.$$

Théorème. La fonction $t\mapsto \exp t$ est dérivable de tout ordre. Elle est positive et strictement croissante, avec

$$\exp(\ln x) = x \quad \forall x \in \mathbb{R}_+^*,$$

 $\ln(\exp t) = t \quad \forall t \in \mathbb{R},$
 $(\exp t)' = \exp t.$

Elle satisfait de plus

$$\exp 0 = 1$$
, $\lim_{t \to -\infty} \exp t = 0$, $\lim_{t \to +\infty} \exp t = +\infty$

ainsi que

$$\exp(x+y) = (\exp x)(\exp y),$$

 $\exp(x-y) = (\exp x)/(\exp y) \ \forall x, y \in \mathbb{R}.$

On prouve que

$$(\exp t)' = \exp t$$

On a

$$(\exp t)' = \frac{1}{(\ln x)'}$$

où x satisfait $t = \ln x$; c-à-d, $\exp t = x$. Mais alors

$$(\exp t)' = \frac{1}{(\ln x)'}$$

$$= \frac{1}{1/x} = \frac{1}{1/(\exp t)} = \exp t.$$

On prouve que

$$\lim_{t\,\downarrow\,-\infty}\,\exp t\,=\,0$$

Puisque $\lim_{x\downarrow 0} \ln x = -\infty$, on a

$$\lim_{t \downarrow -\infty} \exp t = \lim_{x \downarrow 0} \exp(\ln x)$$
$$= \lim_{x \downarrow 0} x$$
$$= 0$$

43

Théorème. La fonction $t \mapsto \exp t$ est dérivable de tout ordre. Elle est positive et strictement croissante, avec

$$\exp(\ln x) = x \quad \forall x \in \mathbb{R}_+^*,$$

 $\ln(\exp t) = t \quad \forall t \in \mathbb{R},$
 $(\exp t)' = \exp t.$

Elle satisfait de plus

$$\exp 0 = 1$$
, $\lim_{t \to -\infty} \exp t = 0$, $\lim_{t \to +\infty} \exp t = +\infty$

ainsi que

$$\frac{\exp(x+y) = (\exp x)(\exp y)}{\exp(x-y) = (\exp x)/(\exp y)} \ \forall x, y \in \mathbb{R}.$$

Théorème. La fonction $t \mapsto \exp t$ est dérivable de tout ordre. Elle est positive et strictement croissante, avec

$$\exp(\ln x) = x \quad \forall x \in \mathbb{R}_+^*,$$

 $\ln(\exp t) = t \quad \forall t \in \mathbb{R},$
 $(\exp t)' = \exp t.$

Elle satisfait de plus

$$\exp 0 = 1$$
, $\lim_{t \downarrow -\infty} \exp t = 0$, $\lim_{t \to +\infty} \exp t = +\infty$

ainsi que

45

46

$$\exp(x+y) = (\exp x)(\exp y),$$
$$\exp(x-y) = (\exp x)/(\exp y) \ \forall x,y \in \mathbb{R}.$$

On prouve que

$$\exp(x+y) = (\exp x)(\exp y)$$

On pose

$$\exp x = t, \exp y = u.$$

On a donc

$$x = \ln t, y = \ln u.$$

Il vient

$$x+y = \ln t + \ln u = \ln(tu),$$

d'où $\exp(x+y) = tu = (\exp x)(\exp y).$

Comment définir 10x?

On veut respecter la loi $10^{x+y} = 10^x \cdot 10^y$

Ceci impose
$$10^0 = 1$$
.

Pour
$$x = n \in \mathbb{N}^*$$
, on pose
$$10^n = 10 \times 10 \times 10 \cdots \times 10 \quad (n \text{ fois})$$

Puisqu'on veut $10^n \cdot 10^{-n} = 10^0 = 1$, on est mené à définir

Puisqu'on veut

$$10^{-n} = \frac{1}{10^n}$$

$$10^{1/n} \times 10^{1/n} \times 10^{1/n} \dots (n \text{ facteurs}) = 10,$$

on définit

$$10^{1/n} = \sqrt[n]{10}$$
 (l'unique nombre positif dont la puissance n vaut 10)

Puisqu'on veut

on définit
$$\frac{10^{1/n} \times 10^{1/n} \times \cdots \times 10^{1/n}}{m \text{ fois}} = 10^{m/n},$$
$$10^{m/n} = (\sqrt[n]{10})^m$$

On arrive ainsi à définir 10x quand x est rationnel: x = m/n. Mais au-delà?

49

rappel:

Un nombre réel x est dit rationnel si on peut l'écrire dans la forme x = a/boù a et b sont des entiers

Les rationnels sont dense dans les réels, mais très minoritaire Théorème. Le nombre $\sqrt{2}$ est irrationnel.

Démonstration. On raisonne par l'absurde: on suppose que $\sqrt{2} = a/b$, où a et b sont des entiers positifs sans facteurs communs.

Alors

$$\sqrt{2}b = a \implies 2b^2 = a^2$$
 $\implies a^2$ est divisible par 2
 $\implies a$ est divisible par 2
 $\implies a^2$ est divisible par 4
 $\implies 2b^2$ est divisible par 4
 $\implies b^2$ est divisible par 2
 $\implies b$ est divisible par 2

Contradiction! (Et a et b seraient divisibles par 2.)

Fonctions exponentielles et logarithmiques générales

Soit $\alpha > 0$. Il n'est pas évident de définir α^x quand x n'est pas rationnel.

En utilisant les fonctions ln et exp, on peut définir la fonction exponentielle de base α comme suit:

$$\alpha^x := \exp(x \ln \alpha) \quad (x \in \mathbb{R})$$

$$lpha^x \,:=\, \exp{(x \ln lpha)} \quad (x \in \mathbb{R})$$

En partant de la nouvelle définition on retrouve, pour les rationnels, la bonne interprétation

$$\alpha^{n} = \exp(n \ln \alpha) = \exp(\ln(\alpha^{n})) = \alpha^{n}$$

$$\alpha^{1/n} = \exp((1/n) \ln \alpha) = \exp(\ln(\sqrt[n]{\alpha}))$$

$$= \sqrt[n]{\alpha}$$

$$\alpha^{m/n} = \exp((m/n) \ln \alpha) = \exp(\ln([\sqrt[n]{\alpha}]^{m}))$$

$$= [\sqrt[n]{\alpha}]^{m}$$

Rq: $\alpha^{1/2}$ (par exemple) coïncide avec $\sqrt{\alpha}$, l'unique solution positive de l'équation $x^2 = \alpha$.

53

Et on étend certaines lois de façon naturelle:

$$\ln(\alpha^r) = \ln\{\exp(r \ln \alpha)\}$$

= $r \ln \alpha \quad (r \in \mathbb{R})$
 $\forall x \alpha^y = \exp(r \ln \alpha) \times \exp(y \ln \alpha)$

$$\alpha^x \times \alpha^y = \exp(x \ln \alpha) \times \exp(y \ln \alpha)$$

$$= \exp((x+y) \ln \alpha)$$

$$= \alpha^{x+y} \quad (x, y \in \mathbb{R})$$

De même

Exemple Calculer
$$\frac{d}{dx}2^x$$

$$[2^{x}]' = [\exp(\ln(2^{x}))]'$$

$$= [\exp(x \ln 2)]'$$

$$= (\ln 2) \exp(x \ln 2)$$

$$= (\ln 2) \exp(\ln(2^{x}))$$

$$= (\ln 2) 2^{x}$$

De façon générale, on a $[a^x]'=(\ln a)\,a^x\;(ext{où }a>0)$

Exercice Calculer $\frac{d}{dx}(x^{\sin x})$ (x > 0)

$$egin{aligned} & rac{d}{dx} \left\{ x^{\sin x}
ight\} &= rac{d}{dx} \left\{ \exp \left[\ln(x^{\sin x})
ight]
ight\} \ &= rac{d}{dx} \left\{ \exp \left[(\sin x) \ln(x)
ight]
ight\} \ &= \exp \left[(\sin x) \ln(x)
ight] imes rac{d}{dx} \left\{ (\sin x) \ln(x)
ight\} \ &= x^{\sin x} \left\{ (\cos x) \ln x + (\sin x) rac{1}{x}
ight\} \end{aligned}$$

Le fabuleux destin du nombre d'Euler

Il existe un (et un seul) nombre e tel que

$$\int_1^e \frac{1}{x} dx = 1$$

c-à-d, tel que $\ln e = 1$, ou encore tel que $e = \exp(1)$.

$$\int_{1}^{2} \frac{1}{x} dx < 1 \implies e > 2$$

$$\int_{1}^{4} \frac{1}{x} dx = \int_{1}^{2} \frac{1}{x} dx + \int_{2}^{4} \frac{1}{x} dx$$

$$> 1/2 + 2/4 = 1$$

Euler: $e \approx 2,71828182845904523536028$

57

Leonhard Euler

1707-1783

59

A la toute fin du cours, on aura les moyens pour prouver :

Théorème. Le nombre e est irrationnel.

Trois équations dans la carrière d'Euler

A)
$$1 + 1/4 + 1/9 + 1/16... + 1/k^2 + ... = \pi^2/6$$

B)
$$\ln 2 = 2 \left[\frac{(1/3)}{1} + \frac{(1/3)^3}{3} + \frac{(1/3)^5}{5} + \frac{(1/3)^7}{7} + \dots \right]$$

C)
$$e^{\pi i} + 1 = 0$$

En fait, de façon plus générale, Euler définit $ext{e} e^{u+iv} = e^u \{\cos v + i \sin v\}$

Notation

La fonction exponentielle générale, lorsque l'on utilise la base e, permet une notation simplifiée.

$$lpha^x \, := \, \exp \left(x \ln lpha
ight) \quad (x \in \mathbb{R})$$

On a
$$e^x = \exp(x \ln e) = \exp(x)$$

On peut donc laisser tomber la notation exp(x), et écrire e^x

Et on a
$$(e^x)' = e^x$$

La fonction logarithmique de base $\alpha > 1$ est définie comme suit:

$$\log_{lpha}x := rac{\ln x}{\ln lpha}.$$
 Rq: Alors $\ln = \log_e$

Ses propriétés sont faciles à déduire.

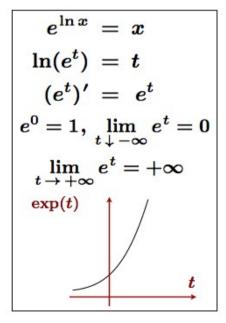
Par exemple, on a

$$\log_{lpha}(xy) = \log_{lpha} x + \log_{lpha} y \quad (x,y \in \mathbb{R}_{+}^{*})$$

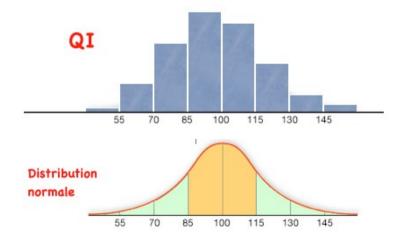
Le cas $\alpha = 10$ correspond au logarithme décimal ou commun. Utilité :

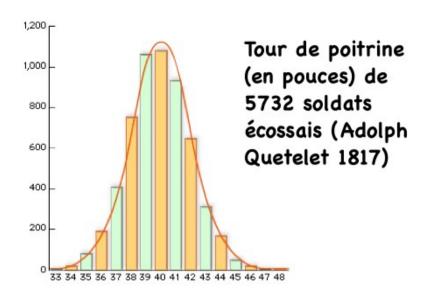
$$\log_{10}(abc, defg) \,=\, \log_{10}(a, bcdefg) + 2$$

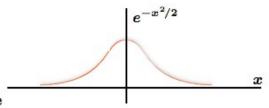
Résumé :



Exemple en statistique: Quand on mesure les valeurs d'une variable aléatoire, on trouve souvent une distribution de la forme







On peut prouver que

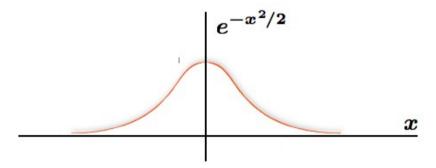
$$\int_{-\infty}^{\infty} e^{-x^2/2} dx = \sqrt{2\pi}.$$

Donc la fonction

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

est la fréquence d'une probabilité sur \mathbb{R} .

Il s'agit de la distribution normale.



On verra que l'intégrale 'impropre'

$$\int_0^\infty e^{-x^2/2}\,dx$$

converge...

Finance (théorie de l'intérêt)

Les taux d'intérêt sont donnés sur une base nominale (annuelle). L'intérêt est en général composé (plutôt que simple).

Exemple. Si le taux d'intérêt est de 5% et l'intérêt est simple, et si l'on verse 100€ dans son compte, on a, après un an, un solde de 105€.

67

Mais si l'intérêt est composé tous les 6 mois, on aurait 102,5 après 6 mois, et en fin d'année on aurait:

$$102,5 + \frac{2,5}{100}(102,5) = (1,025)^2100 = 105,0625$$
 (plutôt que 105)

De même, si l'intérêt est versé tous les trimestres, ou tous les mois, on aura

$$\left(1 + \frac{0,05}{4}\right)^4 100$$
 ou $\left(1 + \frac{0,05}{12}\right)^{12} 100$

De façon générale, un taux nominal de r (décimal) qui est composé n fois pendant le période donne lieu au facteur de croissance

 $\left(1+\frac{r}{n}\right)^n$

A quoi tend ceci lorsque n tend vers l'infini? (Intérêt versé continuellement!)

Proposition. On a

$$\lim_{n\to\infty}\left(1+\frac{r}{n}\right)^n\,=\,e^r.$$

Démonstration. Montrer

$$\lim_{n\to\infty} \left(1+\frac{r}{n}\right)^n = e^r$$

équivaut à montrer

$$\lim_{n\to\infty} n \ln \left(1 + \frac{r}{n}\right) \, = \, r,$$

ce qui suit de la règle de l'Hospital.

Remarque: $e^{0.05} \approx 1.0513$

(comment faire un tel calcul?)

Math Analyse II (séq 4) printemps 2016

Cours de Francis Clarke

Khôlle 2 (15 min)

- 1. Évaluer $\int_0^1 \frac{t \, dt}{1+t}$.
- 2. Déterminer les intégrales indéfinies suivantes, en utilisant l'intégration par parties :

$$(a) \int xe^{5x} dx \qquad (b) \int \frac{\ln t}{t^2} dt$$

71

KH 2 corrigé

1. (C'est un exemple de réécriture fait en cours) On trouve

$$\int_0^1 \frac{t \, dt}{1+t} = \int_0^1 \frac{t+1-1}{1+t} \, dt = \int_0^1 1 \, dt - \int_0^1 \frac{1}{1+t} \, dt$$
$$= t \Big|_0^1 - \ln(1+t) \Big|_0^1 = 1 - 0 - \ln 2 + \ln 1 = 1 - \ln 2.$$

2(a). On utilise l'intégration par parties avec u(x) = x et $v'(x) = e^{5x}$, d'où $v(x) = \frac{1}{5}e^{5x}$. On a alors

$$\int xe^{5x}dx = uv - \int u'vdx = x \times \frac{1}{5}e^{5x} - \int 1 \times \frac{1}{5}e^{5x} = \frac{1}{5}xe^{5x} - \frac{1}{25}e^{5x} + C.$$

2(b). On utilise l'intégration par parties avec $u(t) = \ln t$ et $v'(t) = 1/t^2$, d'où v(t) = -1/t. On a alors

$$\int \frac{\ln t}{t^2} dt = uv - \int u'v dt = -\frac{\ln t}{t} - \int \frac{1}{t} \times \frac{-1}{t} dt = -\frac{\ln t}{t} + \int \frac{1}{t^2} dt = -\frac{\ln t}{t} - \frac{1}{t} + C.$$

