Fiche 4: Applications linéaires I

Exercice 1. Soit a un réel. Parmi les applications suivantes, déterminer celles qui sont linéaires:

d)
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 e) $\mathbb{R}^3 \longrightarrow \mathbb{R}^2$ $(x,y) \longmapsto (x+a,y+a)$ e) $(x,y,z) \longmapsto (x+z,y+z)$

f)
$$\begin{array}{cccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ (x,y,z) & \longmapsto & (x^2,y^2,z^2) \end{array}$$
 g) $\begin{array}{cccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \sin x \end{array}$

Exercice 2. Soit f l'application de \mathbb{R}^2 dans \mathbb{R}^5 définie pour tous α, β reéls par

$$f[(\alpha, \beta)] = (\alpha + 2\beta, \alpha, \alpha + \beta, 3\alpha + 5\beta, -\alpha + 2\beta)$$

- a) Montrer que f est une application linéaire.
- b) Déterminer Ker f et préciser sa dimension.
- c) Déterminer Im f et préciser sa dimension.

Exercice 3. Dans \mathbb{R}^3 , on considère les vecteurs

$$u = (2, 1, -1),$$
 $v = (1, -1, 3),$ $w = (3, 3, -5).$

On note F le sous-espace vectoriel engendré par (u, v, w).

- a) Déterminer une base de F.
- b) Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application définie pour des réels α, β, γ par

$$f[(\alpha, \beta, \gamma)] = (3\alpha + \gamma, \alpha - \beta + \gamma, -3\alpha - 3\beta + \gamma).$$

Montrer que f est un endomorphisme ¹ de \mathbb{R}^3 .

- c) Déterminer une base de Ker f et une base de Im f. Préciser le rang de f.
- d) A-t-on $\mathbb{R}^3 = \operatorname{Ker} f \oplus \operatorname{Im} f$?
- e) Les vecteurs u, v, w sont-ils des éléments de Im f?
- f) Déterminer une base et la dimension de $F \cap \operatorname{Im} f$

Exercice 4. Soient $n \ge 1$ et $m \ge 1$ deux entiers. Soit f une application linéaire de \mathbb{R}^n dans \mathbb{R}^m . Soit (v_1, v_2, \dots, v_p) une famille de vecteurs de \mathbb{R}^n .

- a) Montrer que si (v_1, v_2, \ldots, v_p) est une famille génératrice de \mathbb{R}^n alors $(f(v_1), f(v_2), \ldots, f(v_p))$ est une famille génératrice de Im f.
- b) Montrer que si $(f(v_1), f(v_2), \ldots, f(v_p))$ est une famille libre alors (v_1, v_2, \ldots, v_p) est une famille libre.
- c) Montrer que si f est injective et si (v_1, v_2, \ldots, v_p) est une famille libre alors $(f(v_1), f(v_2), \ldots, f(v_p))$ est une famille libre.

Exercice 5. Soit $(\vec{e_1}, \vec{e_2}, \vec{e_3})$ une base de \mathbb{R}^3 , et λ un nombre réel. Démontrer que la donnée de

$$\begin{cases} \phi(\vec{e_1}) &= \vec{e_1} + \vec{e_2} \\ \phi(\vec{e_2}) &= \vec{e_1} - \vec{e_2} \\ \phi(\vec{e_3}) &= \vec{e_1} + \lambda \vec{e_3} \end{cases}$$

définit une application linéaire de \mathbb{R}^3 dans \mathbb{R}^3 . Écrire l'image du vecteur $\vec{v} = a_1\vec{e_1} + a_2\vec{e_2} + a_3\vec{e_3}$. Comment choisir λ pour que ϕ soit injective? surjective?

Exercice 6. Soit u l'application de \mathbb{R}^4 dans \mathbb{R}^3 définie, pour tout $(x, y, z, t) \in \mathbb{R}^4$, par

$$u(x, y, z, t) = (x + y + z + t, y - t, x - 2z + 3t).$$

- a) Montrer que u est une application linéaire.
- b) Déterminer une base et la dimension du noyau de u. Est-elle injective?
- c) En déduire que u est surjective.

Exercice 7. Soit $E = \mathbb{R}_n[X]$ l'espace vectoriel des polynômes de degré inférieur ou égal à n. Pour $p \leq n$ on note e_p le polynôme X^P . Soit f l'application définie sur E par f(P) = Q avec Q(X) = P(X+1) + P(X-1) - 2P(X).

- a. Montrer que f est une application linéaire de E dans E.
- **b.** Pour $p \leq n$, calculer $f(e_p)$; quel est son degré? En déduire ker f, Im f et le rang de f.
- c. Soit Q un polynôme de Im f; montrer qu'il existe un polynôme unique P tel que : f(P) = Q et P(0) = P'(0) = 0.

Exercice 8. Soit $E = \mathbb{R}_n[X]$ l'espace vectoriel des polynômes de degré $\leq n$, et $f: E \to E$ définie par :

$$f(P) = P + (1 - X)P'.$$

Montrer que f est une application linéaire et donner une base de $\operatorname{Im} f$ et de $\ker f$.

Exercices à préparer pour le contrôle.

Exercice 1. On considère $\mathcal{B} = \{e_1, e_2, e_3\}$ la base canonique de \mathbb{R}^3 et l'endomorphisme f de \mathbb{R}^3 défini par

$$f(e_1) = e_1$$
, $f(e_2) = -e_1$, $f(e_3) = e_3$.

- a) Déterminer l'image par f d'un élément (x, y, z) de \mathbb{R}^3 .
- b) Déterminer le noyau et l'image de f et donner une base de chacun d'eux.
- c) Montrer que $f \circ f = f$.

Exercice 2. Soit $n \ge 1$ un entier. Soient u et v deux endomorphismes de \mathbb{R}^n tels que $u \circ v = 0$. Montrer que

$$\operatorname{Im} v \subseteq \operatorname{Ker} u$$
.

En déduire que

$$\operatorname{rang}(u) + \operatorname{rang}(v) \leq n$$
.

Exercice 3. Donner des exemples d'applications linéaires de \mathbb{R}^2 dans \mathbb{R}^2 vérifiant :

- a) Ker(f) = Im(f).
- b) Ker(f) inclus strictement dans Im(f).
- c) Im(f) inclus strictement dans Ker(f).

Exercice 4. a) Soit f une application linéaire surjective de \mathbb{R}^4 dans \mathbb{R}^2 . Quelle est la dimension du noyau de f?

- b) Soit g une application injective de \mathbb{R}^{26} dans \mathbb{R}^{100} . Quelle est la dimension de l'image de g?
- c) Existe-t-il une application linéaire bijective entre \mathbb{R}^{50} et $\mathbb{R}^{72}\,?$

Exercice 5. Les applications suivantes sont-elles linéaires? Quand la réponse est oui, sont-elles surjectives, injectives? Déterminer leur image et leur noyau.