UE : Analyse réelle

Feuille d'exercices nº 5

Continuité

Exercice 1. Pour chacune des propositions, décider si elle est vraie ou fausse. Justifier.

- 1. Si f est croissante sur **R**, alors pour tout $(x,y) \in \mathbf{R}^2$, on a : $x \leq y \Leftrightarrow f(x) \leq f(y)$.
- 2. Soit I un intervalle et $f: I \to \mathbf{R}$ une fonction. Si f^2 est continue sur I alors f est continue sur I.
- 3. Soit I un intervalle et $f: I \to \mathbf{R}$ une fonction. Si f^3 est continue sur I alors f est continue sur I.

Exercice 2. Soit a et b deux réels tels que a < b. Soit $f : [a, b] \to \mathbf{R}$ une fonction.

- 1. La continuité de la fonction f est-elle une condition nécessaire à l'existence d'un point fixe?
- 2. La continuité de la fonction f est-elle une condition suffisante à l'existence d'un point fixe?
- 3. Montrer que si f est continue et vérifie $f([a,b]) \subset [a,b]$, alors f admet un point fixe.

Exercice 3. Soit $(a,b) \in \mathbb{R}^2$ tel que a < b. Soit $f : [a,b] \to \mathbb{R}$ une fonction continue.

- 1. On suppose que pour tout $x \in [a, b]$, f(x) > 0. Montrer qu'il existe k > 0 tel que, pour tout $x \in [a, b]$, $f(x) \ge k$.
- 2. Le résultat de la question précédente est-il toujours vrai si f est définie sur \mathbb{R} ? Justifier.

Exercice 4.

- 1. Soit $f: \mathbf{R} \to \mathbf{R}$ une fonction continue qui admet des limites finies en $+\infty$ et en $-\infty$. Montrer que f est bornée sur \mathbf{R} .
- 2. Soit $f: \mathbf{R} \to \mathbf{R}$ une fonction continue telle que $\lim_{x \to -\infty} f(x) = +\infty$ et $\lim_{x \to +\infty} f(x) = +\infty$. Montrer que f admet un minimum global sur \mathbf{R} .

Exercice 5. Extrait Contrôle Continu 2019-2020

On se propose de montrer qu'une fonction uniformément continue sur \mathbf{R}^+ croît de façon au plus linéaire à l'infini. Autrement dit, si $f:[0,+\infty[\to\mathbf{R}$ est une application uniformément continue, on veut démontrer qu'il existe deux réels positifs a et b tels que, pour tout $x \in [0,+\infty[$, on ait $|f(x)| \leq ax + b$.

1. Soit $f:[0,+\infty[\to \mathbf{R} \text{ uniformément continue. Montrer qu'il existe }\alpha>0 tel que$

$$\forall (x,y) \in ([0,+\infty[)^2, \quad (|x-y| \le \alpha \Longrightarrow |f(x)-f(y)| \le 1).$$

- 2. Montrer que pour tout $x \in [0, \alpha]$, on a $|f(x)| \leq |f(0)| + 1$.
- 3. Montrer par récurrence que pour tout $n \in \mathbb{N}$ et tout $x \in [n\alpha, (n+1)\alpha]$, on a $|f(x)| \le |f(0)| + (n+1)$.
- 4. Montrer qu'il existe a, b dans \mathbf{R}^+ tels que pour tout $n \in \mathbf{N}$ et tout $x \in [n\alpha, (n+1)\alpha]$:

$$ax + b \ge |f(0)| + (n+1),$$

et conclure.

Exercice 6. Soit $D \subset \mathbf{R}$ et $f, g : D \to \mathbf{R}$ deux applications continues. Soit A une partie dense de D. Montrer que si f(a) = g(a) pour tout $a \in A$, alors f(x) = g(x) pour tout $x \in D$.

Exercice 7.

On cherche à déterminer l'ensemble des fonctions $f: \mathbf{R} \to \mathbf{R}$ continues, qui vérifient la condition :

$$\forall (x,y) \in \mathbf{R}^2, \ f(x+y) = f(x)f(y), \tag{*}$$

Soit $f: \mathbf{R} \to \mathbf{R}$ continue, qui vérifie la condition (\star) .

- 1. Quelles sont les valeurs possibles de f(0)?
- 2. Montrer que f est positive sur \mathbf{R} et que si $f(0) \neq 0$ alors f est strictement positive sur \mathbf{R} . Qu'a-t-on si f(0) = 0?

Dans la suite de cette partie, on suppose que $f(0) \neq 0$ et on pose a = f(1).

- 3. Montrer que, pour tout $n \in \mathbb{N}$, $f(n) = a^n$.
- 4. En déduire que, pour tout $n \in \mathbf{Z}$, $f(n) = a^n$.
- 5. Montrer que, pour tout $n \in \mathbf{N}^*$, $f\left(\frac{1}{n}\right) = a^{1/n}$.
- 6. Montrer que, pour tout $r \in \mathbf{Q}$, $f(r) = a^r$.
- 7. Montrer que, pour tout $x \in \mathbf{R}$, $f(x) = a^x$.
- 8. En déduire l'ensemble des fonctions $f: \mathbf{R} \to \mathbf{R}$ continues qui vérifient (\star) .

Exercice 8. Soit $A \subseteq \mathbf{R}$ une partie fermée de \mathbf{R} et $f: A \to \mathbf{R}$ une application continue. Montrer qu'il existe une application continue $g: \mathbf{R} \to \mathbf{R}$ telle que g(x) = f(x) pour tout $x \in A$. Montrer que la conclusion est fausse en général si l'ensemble A n'est pas supposé être fermé.

Exercice 9. Soit $D \subset \mathbf{R}$ et $f: D \to \mathbf{R}$ une application uniformément continue. Montrer que si D est bornée, alors f est bornée. Montrer que la conclusion est fausse en général si D n'est pas bornée.

Exercice 10. Montrer que la composée, quand elle est définie, de deux fonctions uniformément continues, est une fonction uniformément continue.

Exercice 11. Une application $f: X \to Y$ entre deux espaces normés X et Y est dite ouverte si elle envoie les ouverts de X sur des ouverts de Y. Montrer que si $f: \mathbf{R} \to \mathbf{R}$ est continue et ouverte alors f est monotone.

Exercice 12. Soit a et b deux réels tels que a < b. Soit $f : [a, b] \to \mathbf{R}$ une fonction croissante. Pour $x \in]a, b[$, on note $\delta(x)$ le saut de f en x, défini par :

$$\delta(x) = \lim_{y \to x^+} f(y) - \lim_{y \to x^-} f(y).$$

- 1. Pour $n \in \mathbb{N}^*$, montrer que $E_n = \{x \in]a, b[t.q.\delta(x) > \frac{1}{n}\}$ est fini.
- 2. En déduire que l'ensemble des points de discontinuité de f est au plus dénombrable.
- 3. Généraliser le résultat au cas où f est une fonction définie sur \mathbf{R} .