Théorème (lemme de Gronwall)

Soient I intervalle, $t_0 \in I$, $a,b,c:I \to \mathbb{R}$ continues avec a positive telles que $\forall t \in I$, $t \geq t_0$, on a $y(t) \leq b(t) + \int_{t_0}^t a(s)y(s) \, ds$. Alors, on a

$$\forall t \in I, \ t \geq t_0, \quad y(t) \leq b(t) + \int_{t_0}^t b(s) \, a(s) \, e^{\int_s^t a(u) \, du} \, ds$$

Si, de plus, b(t) = b est une fonction constante, on a

$$\forall t \in I, \ t \geq t_0, \quad y(t) \leq b e^{\int_{t_0}^t a(s) ds}$$

Théorème (lemme de Gronwall – Forme différentielle)

Soient I intervalle, $t_0 \in I$, $a, b, c : I \to \mathbb{R}$ continues avec y de classe C^1 et $\forall t \in I$, on $a \ y'(t) \le b(t) + a(t)y(t)$. Alors, on a

$$\forall t \in I, \ t \geq t_0, \ y(t) \leq y(t_0) e^{\int_{t_0}^t a(s) \, ds} + \int_{t_0}^t b(s) \, e^{\int_s^t a(u) \, du} \, ds$$

§2.2 Théorie de Cauchy-Lipschitz

Définition

Soient I intervalle ouvert de \mathbb{R} , U ouvert de \mathbb{R}^d , $f:I\times U\to \mathbb{R}^d$. Une problème de Cauchy est une système d'équations

$$\begin{cases} y'(t) = f(t, y(t)) & t \in I \\ y(t_0) = y_0 \end{cases}$$

où $t_0 \in I$, $y_0 \in U$ sont fixés.

Une solution de ce problème est une fonction $y: J \to \mathbb{R}^d$ avec $J \subseteq I$ ouvert contenant t_0 , y dérivable sur I et vérifiant le système.

Définition

 $f: I \times U \to \mathbb{R}^d$ est localement lipschitzienne par rapport à la variable d'état si $\forall (t,x) \in I \times U$, il existe $J \subseteq I$ ouvert contenant $t, V \subseteq U$ ouvert contenant x et $L \ge 0$ tels que

$$\forall s \in J, \forall y, z \in V, \|f(s,y) - f(s,z)\| \leq L \|y - z\|$$

indep. de 53

Théorème (Cauchy-Lipschitz)

Soient I intervalle ouvert de \mathbb{R} , U ouvert de \mathbb{R}^d , $f:I\times U\to \mathbb{R}^d$. Supposons que f est continue sur $I\times U$ et f localement lipschitzienne par rapport à la variable d'état. Alors, pour tout $(t_0,y_0)\in I\times U$, le problème de Cauchy

$$\begin{cases} y'(t) = f(t, y(t)) & t \in I \\ y(t_0) = y_0 \end{cases}$$

admet une unique solution maximale définie sur un ouvert $J \subseteq I$. En particulier, les hypothèses sont vérifiées siff est de classe C^1 .

Résultat. Deux trajectoires distinctes ne peuvent pas se couper

Théorème (Explosion en temps fini)

Soient I =]a, b[ouvert et $f : I \times \mathbb{R}^d \to \mathbb{R}^d$ vérifiant Cauchy-Lipschitz. Soit y solution maximale de y'(t) = f(t, y(t)) définie sur l'ouvert $]\alpha, \beta[$. Alors, on a

- Si $\beta < b$, alors $\lim_{t \to \beta^-} ||y(t)|| = +\infty$
- Si $a < \alpha$, alors $\lim_{t \to \alpha^+} ||y(t)|| = +\infty$

Résultat. Si f est bornée alors les solutions maximales sont globales

Corollaire

Supposons $f: I \times \mathbb{R}^d \to \mathbb{R}^d$ continue et globalement lipschitzienne par rapport à la variable d'état, c'est-à-dire il existe $k: I \to \mathbb{R}^+$ continue telle que $\forall t \in I$, $\forall x, y \in \mathbb{R}^d$, on a $||f(t,x) - f(t,y)|| \le k(t) ||x - y||$.

Alors toute les solutions maximales sont globales.

A solution wax. 48 globale

Exercice.

On considère le problème de Cauchy suivant :

$$\begin{cases} y'(t) = \sqrt{|y(t)|}, & t \in \mathbb{R} \\ y(0) = 0. \end{cases}$$

- 1. Construire une solution non nulle.
- 2. Le théorème de Cauchy-Lipschitz s'applique-t-il ici? Pourquoi?

Exercice.

On considère le problème de Cauchy suivant

$$\begin{cases} y'(t) = -\frac{1}{t}y(t)^2 + \frac{2}{t}y(t), & t > 0 \\ y(1) = 4. \end{cases}$$

- 1. Montrer que ce problème admet une unique solution maximale $y: J \to \mathbb{R}$ définie sur un intervalle ouvert J.
- 2. Montrer que, pour tout $t \in J$, $y(t) \neq 0$.
- 3. On définit $z: J \to \mathbb{R}$ par z(t) = 1/y(t). Montrer que z est solution sur J de l'équation différentielle

$$z'(t) = -\frac{2}{t}z(t) + \frac{1}{t}, \quad t > 0.$$

- 4. Déterminer l'ensemble des solutions maximales de l'équation précédente.
- 5. En déduire l'intervalle J et une expression explicite pour la solution y.

Exercice.

Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction de classe C^1 . On suppose que, pour tout $x \in \mathbb{R}^{\times}$, xf(x) < 0. Soit $y_0 > 0$. On considère le problème de Cauchy suivant

$$\begin{cases} y'(t) = f(y(t)), & t \in \mathbb{R} \\ y(0) = y_0. \end{cases}$$
 (3)

- 1. Montrer que le problème (??) admet une unique solution maximale $y: J \to \mathbb{R}$ définie sur un intervalle ouvert J.
- 2. Montrer que la fonction $t \mapsto y(t)^2$ est décroissante sur J.
- 3. En déduire que l'intervalle J contient $[0; +\infty[$ et qu'il existe $\ell \geq 0$ tel que $\lim_{t\to +\infty} y(t)^2 = \ell.$
- 4. On veut montrer que $\lim_{t\to +\infty}y(t)=0$. On suppose par l'absurde que $\ell>0$.
 - 4.1 Montrer que, pour tout $t \ge 0$, y(t) > 0 et que $\lim_{t \to \infty} y(t) = \sqrt{\ell}$.
 - 4.2 En déduire que y'(t) admet une limite quand $t \to +\infty$ puis que $f(\sqrt{\ell}) = 0$.
 - 4.3 Conclure.
- 5. On suppose de plus qu'il existe $\alpha > 0$ tel que, pour tout $x \in \mathbb{R}$, $xf(x) \le -\alpha x^2$. Montrer que, pour tout $t \ge 0$, $y(t) \le y_0 e^{-\alpha t}$.

§2.3 Equations différentielles linéaires

Définition

continues.) Une Soient I intervalle de \mathbb{R} , $A:I\to M_{\mathfrak{A}}(\mathbb{R})$, $b:I\to\mathbb{R}^d$ équation différentielle linéaire est de la forme

$$y'(t) = A(t)y(t) + b(t)$$
 (L)

Cette équation est homogène si b = 0, c'est-à-dire

$$y'(t) = A(t)y(t)$$

 (L_H) est l'équation homogène associée à (L)

E ev (LH) SEE direction Has we direction

Théorème

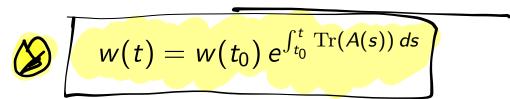
- Le problème de Cauchy correspondant à (L) admet une unique solution maximale et cette solution est globale
- $ightharpoonup L'ensemble <math>S_H$ des solutions de (L_H) est un sev de $C^1(I,\mathbb{R}^d)$ de dim. d. (L'application $y \mapsto y(t_0)$ est un iso. entre S_H et \mathbb{R}^d)
- \triangleright L'ensemble S des solutions de (L) est de la forme $y + S_H$ avec $y \in \mathcal{S}$ (espace affine de direction \mathcal{S}_H) reuter +SEN

Définition

Une base de S_H est un système fondamental de solution de (L_H) . Soit (ϕ_1, \ldots, ϕ_d) une telle base, la matrice $\Phi(t) = (\phi_1(t), \ldots, \phi_d(t))$ est la matrice fondamentale et son déterminant est le wronskien.

Théorème

- Une famille (y_1, \ldots, y_k) de solutions de (L_H) est libre ssi $\exists t_0 \in I$ tel que $(y_1(t_0), \ldots, y_k(t_0))$ est libre ssi $\forall t \in I$ tel que $(y_1(t), \ldots, y_k(t))$ est libre. En particulier (ϕ_1, \ldots, ϕ_d) est un système fondamental de solution ssi son wronskien ne s'annule jamais.
- Le wronskien w est solution de w'(t) = Tr(A(t)) w(t) et donc



Théorème (équation linéaire à coefficient constant)

Soit $A \in M_d(\mathbb{R})$. La solution maximale du système $\begin{cases} y'(t) = Ay(t) \\ y(t_0) = y_0 \end{cases}$ est

définie sur $\mathbb R$ et égale à

$$y(t) = e^{(t-t_0)A}y_0$$

Note. Pour l'équation non homogène y'(t) = Ay(t) + b(t), on cherche une solution de la forme $e^{tA}v(t)$ (variation de la constante)

Définition

Soit $M \in M_d(\mathbb{R})$, l'exponentielle de la matrice M est $e^M = \sum \frac{M^n}{n!}$

- Résultat. C^{N} arcc C^{N} $C^{\mathsf{$
- Soit P inversible alors $e^{PMP^{-1}} = Pe^{M}P^{-1}$
- Si M et N commutent alors e^M et e^N commutent et $e^{M+N} = e^M e^N$
- L'application $t \mapsto e^{tA}$ est dérivable de dérivée $A e^{tA}$

Théorème $\frac{Pn^{2}}{n} = \sum_{n} \frac{(pnp^{2})}{n!} = \sum_{n} \frac{pn^{2}}{n!} = P(\frac{z}{2})^{p}$

On considère le cas d=2. Soit $A\in M_2(\mathbb{R})$. Les solutions de l'équation y'(t)=Ay(t) sont

Si A diagonalisable sur \mathbb{R} avec une base de vecteurs propres (v_1, v_2) de valeurs propres λ_1, λ_2 :

$$\mu_1 e^{\lambda_1 t} v_1 + \mu_2 e^{\lambda_2 t} v_2, \quad \mu_1, \mu_2 \in \mathbb{R}$$

Si A diagonalisable sur $\mathbb C$ mais non sur $\mathbb R$, les valeurs propres sont $\lambda, \bar{\lambda}$; soit v un vecteur propre associé à λ , on écrit $v = v_1 + iv_2$ avec $v_1, v_2 \in \mathbb R^2$ et $\lambda = \alpha + i\beta$ avec $\alpha, \beta \in \mathbb R$:

$$e^{\alpha t} \left(\mu_1(\cos(\beta t)v_1-\sin(\beta t)v_2)+\mu_2(\cos(\beta t)v_2+\sin(\beta t)v_1)\right),\ \mu_1,\mu_2\in\mathbb{R}$$

Si A n'est pas diagonalisable avec unique valeur propre λ avec v_1 vecteur propre et v_2 tel que $(A - \lambda I)v_2 = v_1$:

$$\begin{pmatrix} \lambda \\ \delta \\ \lambda \end{pmatrix} \leftarrow \qquad \qquad \mu_1 e^{\lambda t} \, v_1 + \mu_2 (t e^{\lambda t} v_1 + e^{\lambda t} \, v_2), \quad \mu_1, \mu_2 \in \mathbb{R}$$

Exercice.

Exprimer l'équation différentielle suivante :

$$y^{(3)} + 3y'' - 4y = 0$$

comme un système d'équations linéaires d'ordre 1 à 3 inconnues. Puis, résoudre ce système.