L3 - Mathématiques générales et applications

UE: Topologie et équations différentielles

Feuille d'exercices n° 3

Exercice 1. Révisions. Dans cet exercice, on munit **R** (ainsi que ses intervalles) de la distance usuelle. Les fonctions suivantes sont-elles uniformément continues? lipschitziennes?

$$f: \mathbf{R} \to \mathbf{R}$$

 $x \mapsto x^2,$

$$g: [0,1] \to \mathbf{R}$$

 $x \mapsto \sqrt{x}$

$$h: [1, +\infty] \to \mathbf{R}$$
$$x \mapsto \sqrt{x}$$

Exercice 2. Révisions. On munit $]0, +\infty[$ de la distance usuelle et, pour tout entier $n \ge 0$, on note $f_n:]0, +\infty[\to]0, +\infty[$ la fonction définie par $f_n(x) = \frac{x}{n+x}$

Montrer que la suite $(f_n)_{n\geq 0}$ converge simplement vers la fonction identiquement nulle. La convergence est-elle uniforme?

Exercice 3. Soit (X, d) et (Y, δ) deux espaces métriques. Soit $f: X \to Y$ une application continue. Montrer que si $f: X \to Y$ est une application continue alors son graphe $\Gamma_f = \{(x, f(x)) : x \in X\}$ est un fermé de $X \times Y$.

Exercice 4. Soit (X, d) un espace métrique et A une partie de X. On note χ_A la fonction caractéristique de A définie par $\chi_A(x) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{si } x \notin A \end{cases}$. On suppose que $\mathbf R$ est muni de la distance usuelle.

- 1. Donner une condition nécessaire et suffisante pour que χ_A soit continue.
- 2. Déterminer l'ensemble des points où χ_A est continue.
- 3. Que peut-on dire de $\chi_{\mathbf{Q}}$?

Exercice 5. On suppose que **R** est muni de la distance usuelle. Pour $(n, m) \in \mathbb{N}^2$, on considère la fonction

$$f_{n,m} \colon \mathbf{R} \to \mathbf{R}$$

$$x \mapsto (\cos \pi n! x)^{2m}.$$

- 1. Montrer que pour chaque $n \in \mathbf{N}$ fixé, la suite $(f_{n,m})_{m \in \mathbf{N}}$ converge simplement vers une suite g_n que l'on déterminera. Cette convergence est-elle uniforme?
- 2. Montrer que la suite $(g_n)_{n \in \mathbb{N}}$ converge simplement vers $\chi_{\mathbb{Q}}$.
- 3. En déduire qu'il existe une fonction qui n'est continue en aucun point et qui est limite (simple) de limites (simples) de fonctions continues sur **R**.

Exercice 6. Soit (X, d_X) et (Y, d_Y) deux espaces métriques et $f: X \to Y$. Montrer que f est continue sur X si et seulement si pour toute partie A de X, on a $f(\overline{A}) \subseteq \overline{f(A)}$.

Exercice 7. Soit $E = \mathcal{C}([0,1], \mathbf{R})$ l'ensemble des fonctions continues de [0,1] dans \mathbf{R} . On considère la forme linéaire $\varphi \colon E \to \mathbf{R}$ définie par $\varphi(f) = f(0)$.

- 1. Montrer que φ n'est pas continue sur $(E, \|\cdot\|_1)$.
- 2. Qu'en est-il si on munit E de la norme de la convergence uniforme $\|\cdot\|_{\infty}$?

Exercice 8. Soit E l'espace vectoriel normé $(\mathcal{C}([0,1],\mathbf{R}),\|\cdot\|_1)$. On considère l'application $\mu:E\to E$ définie par

$$\mu(f)(x) = \int_0^x f(t)dt \text{ pour } f \in E \text{ et } x \in [0,1].$$

- 1. Montrer que μ est bien définie et que μ est une application linéaire continue.
- 2. On considère la suite de fonctions $(f_n)_{n\geq 1}$ définie par

$$f_n(t) = n(1-t)^{n-1}$$
 pour $n \ge 1$ et $t \in [0,1]$.

Pour chaque $n \geq 1$, calculer $||f_n||_1$ et $||\mu(f_n)||_1$.

3. En déduire la norme de μ .

Exercice 9. On considère $\ell^{\infty}(\mathbf{R})$ l'espace vectoriel des suites réelles bornées muni de la norme $\|\cdot\|_{\infty}$. Rappelons que pour une suite $u = (u_n)_{n \in \mathbf{N}} \in \ell^{\infty}(\mathbf{R})$, la norme de u vaut $\|u\|_{\infty} = \sup_{n \in \mathbf{N}} |u_n|$. Soit φ l'application de $\ell^{\infty}(\mathbf{R})$ vers lui-même qui à toute suite $u = (u_n)_{n \in \mathbf{N}} \in \ell^{\infty}(\mathbf{R})$ associe la suite

$$\varphi(u) = (u_{n+1} - u_n)_{n \in \mathbf{N}}.$$

- 1. Montrer que φ est une application linéaire continue.
- 2. Déterminer la norme de φ .

Exercice 10. (*) Soit (X, d) un espace métrique et $f: X \to [0, 1]$ une application. Dans cet exercice l'intervalle [0, 1] est muni de la distance usuelle.

Pour tout entier $n \geq 0$, on considère la fonction

$$f_n \colon X \to [0, 1]$$

$$x \mapsto \inf_{y \in X} (f(y) + nd(x, y)).$$

- 0. Remarquer que pour tout $n \ge 0$, on a $f_n \le f$.
- 1. Montrer que pour chaque $n \geq 0$, la fonction f_n est n-lipschitzienne.
- 2. Soit $a \in X$. Montrer que

$$\forall r > 0, \quad \forall n \ge 1/r, \quad f_n(a) \ge \inf_{y \in B(a,r)} f(y).$$

- 3. Montrer que si f est continue en a alors la suite $(f_n(a))_{n>0}$ converge vers f(a).
- 4. Montrer que si f est uniformément continue alors $(f_n)_{n\geq 0}$ converge uniformément vers f.