Fondamentaux des mathématiques - DS n°2 - Corrigé

Exercice 1.

a) Par définition:

$$f[A] = \{f(x), x \in A\} = \{y \in F, \exists x \in A, y = f(x)\}\$$
$$f^{-1}[B] = \{x \in E, f(x) \in B\}$$

.

b) Supposons que $(A \cup B) \subseteq (A \cap B)$. Montrons A = B par double inclusion.

Soit $x \in A$ alors $x \in A \cup B = A \cap B$. Donc on a $x \in B$.

On a montré $\forall x \in A, x \in B$ et donc $A \subseteq B$.

Soit $x \in B$ alors $x \in A \cup B = A \cap B$. Donc on a $x \in A$.

On a montré $\forall x \in A, x \in B$ et donc $B \subseteq A$.

Ainsi A = B

Supposons maintenant A = B

Alors on a, $A \cup B = A \cup A = A$ et $A \cap B = A \cap A = A$. Et donc $A \cup B \subseteq A \cap B$.

On a montré : $(A \cup B) \subseteq (A \cap B) \Leftrightarrow A = B$

(Pour la première implication (en supposant $(A \cup B) \subseteq (A \cap B)$), on pouvait faire $A \subseteq A \cup B \subseteq A \cap B \subseteq B$ et faire la même chose pour B, ou alors invoquer un argument de symétrie.)

c) Pour $A \in \mathcal{P}(E)$ on pose $f : \mathcal{P}(E) \to \mathcal{P}(E)$ définit si $X \in \mathcal{P}(E)$ par $f(X) = X \cap A$. Supposons A = E.

Alors pour $X \in \mathcal{P}(E)$ on a $f(X) = X \cap A = X \cap E = X$.

En particulier on a montré que $\forall X \in \mathcal{P}(E), \exists Y \in \mathcal{P}(E), f(Y) = X$.

La fonction f est donc surjective.

Supposons que f soit surjective.

On a $E \in \mathcal{P}(E)$ et il existe $X \in \mathcal{P}(E)$ tel que f(X) = E.

On a donc $X \cap A = E$. En particulier, $E \subseteq A$

(en effet pour x dans E, on a $x \in X \cap A$ et $x \in A$).

Or $A \subseteq E$.

Et donc A = E.

On a alors montré par double implication montré que f est surjective si et seulement si A = E.

Exercice 2.

a) Pour x dans **R** on a : $x^6 - x - \ln(x) = x \left(x^5 - 1 - \frac{\ln(x)}{x}\right)$.

Or, par croissance comparée $\lim_{x\to +\infty} \frac{\ln(x)}{x} = 0$, donc $\lim_{x\to +\infty} x^5 - 1 - \frac{\ln(x)}{x} = +\infty$.

Et
$$\lim_{x \to +\infty} x^6 - x - \ln(x) = +\infty$$
.

b) Pour
$$x$$
 dans \mathbf{R} , on a $e^x \ln(x) - e^{\sqrt{x}} x^7 = e^x \left(\ln(x) - e^{\sqrt{x} - x} x^7 \right) = e^x \left(\ln(x) - e^{\sqrt{x} - x + 7 \ln(x)} \right)$.
Et $\sqrt{x} - x + 7 \ln(x) = x \left(\frac{1}{\sqrt{x}} - 1 + \frac{7 \ln(x)}{x} \right)$.

Or par croissance comparée
$$\lim_{x\to +\infty} \frac{\ln(x)}{x} = 0$$
. De plus $\lim_{x\to +\infty} \frac{1}{\sqrt{x}} = 0$.

On a alors
$$\lim_{x \to +\infty} \sqrt{x} - x + 7\ln(x) = \lim_{x \to +\infty} x \left(\frac{1}{\sqrt{x}} - 1 + \frac{7\ln(x)}{x}\right) = -\infty.$$

On a donc
$$\lim_{x \to +\infty} e^{\sqrt{x} - x + 7\ln(x)} = 0$$
. Or $\lim_{x \to +\infty} \ln(x) = +\infty$ et $\lim_{x \to +\infty} e^x = +\infty$,

donc
$$\lim_{x\to +\infty} e^x \left(\ln(x) - e^{\sqrt{x} - x + 7\ln(x)} \right) = +\infty$$
. On peut donc conclure :

$$\lim_{x \to +\infty} e^x \ln(x) - e^{\sqrt{x}} x^7 = +\infty.$$

c) Pour
$$x$$
 dans \mathbf{R} on a $(1+x)^{\frac{1}{x}} = \exp\left(\frac{\ln(1+x)}{x}\right)$.

Or ln est dérivable en 1 et on reconnait dans $\lim_{x\to 0} \frac{\ln(1+x)}{x} = \lim_{x\to 0} \frac{\ln(1+x) - \ln(1)}{x}$ la définition du nombre dérivé $\ln'(1) = 1$.

On a donc comme exp est continue
$$\lim_{x\to 0} \exp\left(\frac{\ln(1+x)}{x}\right) = e^1 = e$$
.

Et
$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$$

Exercice 3.

Supposons $(P \Rightarrow Q)$ et $(Q \Rightarrow R)$. Montrons $(P \text{ ou } Q) \Leftrightarrow (Q \text{ et } R)$ par double implication : Supposons (P ou Q).

Si on a P alors on a Q car $P \Rightarrow Q$. On a aussi R car $Q \Rightarrow R$.

Si on a Q, on a aussi R car $Q \Rightarrow R$.

Dans les deux cas, on a Q et R.

Supposons (Q et R).

On a Q.

On a donc P ou Q

On a donc $(P \text{ ou } Q) \Leftrightarrow (Q \text{ et } R)$.

Supposons maintenant $(P \text{ ou } Q) \Leftrightarrow (Q \text{ et } R)$.

Si on a P,

alors on a P ou Q et donc Q et R. En particulier on a Q

On a donc $P \Rightarrow Q$.

Si on a Q,

alors on a P ou Q et donc Q et R. En particulier on a R

On a donc $Q \Rightarrow R$.

On a donc $(P \Rightarrow Q)$ et $(Q \Rightarrow R)$.

On a bien montré que la proposition $(P \Rightarrow Q)$ et $(Q \Rightarrow R)$ est équivalente à la proposition $(P \text{ ou } Q) \Leftrightarrow (Q \text{ et } R)$ par double implication.

Sinon on peut faire comme suit :

On sait que $(P \text{ ou } Q) \Leftarrow (Q \text{ et } R)$ est toujours vraie, donc que $(P \text{ ou } Q) \Leftrightarrow (Q \text{ et } R)$ est équiva-

lente $(P \text{ ou } Q) \Rightarrow (Q \text{ et } R)$

$$(P \text{ ou } Q) \Leftrightarrow (Q \text{ et } R) : ((P \text{ ou } Q) \text{ et } (Q \text{ et } R)) \text{ ou } (\neg (P \text{ ou } Q) \text{ et } \neg (Q \text{ et } R))$$

$$: ((P \text{ et } Q \text{ et } R) \text{ ou } (Q \text{ et } Q \text{ et } R)) \text{ ou } ((\neg P \text{ et } \neg Q) \text{ et } (\neg Q \text{ ou } \neg R))$$

$$: ((P \text{ et } Q \text{ et } R) \text{ ou } (Q \text{ et } R)) \text{ ou } ((\neg P \text{ et } \neg Q \text{ et } \neg Q) \text{ ou } (\neg P \text{ et } \neg Q \text{ et } \neg R))$$

$$: (Q \text{ et } R) \text{ ou } (\neg P \text{ et } \neg Q) \text{ ou } (\neg P \text{ et } \neg Q \text{ et } \neg R)$$

$$: (Q \text{ et } R) \text{ ou } (\neg P \text{ et } Q \text{ et } R) \text{ ou } (\neg P \text{ et } \neg Q \text{ et } R) \text{ ou } (\neg P \text{ et } \neg Q \text{ et } \neg R)$$

$$: (P \text{ et } Q \text{ et } R) \text{ ou } (\neg P \text{ et } Q \text{ et } R) \text{ ou } (\neg P \text{ et } \neg Q \text{ et } R) \text{ ou } (\neg P \text{ et } \neg Q \text{ et } \neg R)$$

$$(P\Rightarrow Q)\text{ et }(Q\Rightarrow R): (\neg P\text{ ou }Q)\text{ et }(\neg Q\text{ ou }R)\\ : (\neg P\text{ et }\neg Q)\text{ ou }(\neg P\text{ et }R)\text{ ou }(Q\text{ et }\neg Q)\text{ ou }(Q\text{ et }R)\\ : (\neg P\text{ et }\neg Q)\text{ ou }(\neg P\text{ et }R)\text{ ou }(Q\text{ et }R)\\ : (\neg P\text{ et }\neg Q\text{ et }R)\text{ ou }(\neg P\text{ et }\neg Q\text{ et }R)\text{ ou }(\neg P\text{ et }Q\text{ et }R)\\ \text{ ou }(\neg P\text{ et }\neg Q\text{ et }R)\text{ ou }(\neg P\text{ et }Q\text{ et }R)\text{ ou }(\neg P\text{ et }Q\text{ et }R)\\ : (\neg P\text{ et }\neg Q\text{ et }\neg R)\text{ ou }(\neg P\text{ et }Q\text{ et }R)\text{ ou }(\neg P\text{ et }\neg Q\text{ et }R)\text{ ou }(\neg P\text{ et }\neg Q\text{ et }R)\text{ ou }(\neg P\text{ et }\neg Q\text{ et }R)$$

Ce calcul (appelé mise sous forme normale disjonctive) montre l'équivalence de ces deux propositions.

En fait ce calcul donne les tables de vérité de ces propositions :

Exercice 4.

a) Soient x et y dans \mathbf{R} . On a :

$$\begin{split} f(x) &= f(y) \Rightarrow \arctan(e^x - e^{-x}) = \arctan(e^y - e^{-y}) \\ &\Rightarrow e^x - e^{-x} = e^y - e^{-y} \\ &\Rightarrow \sinh(x) = \sinh(y) \\ &\Rightarrow x = y \end{split} \qquad \text{car arctan est injective}$$

On a montré $\forall (x,y) \in \mathbf{R}^2, f(x) = f(y) \Rightarrow x = y$. C'est à dire que f est injective. Pour x in \mathbf{R} , $\arctan(e^x - e^{-x}) < \frac{\pi}{2}$, \arctan étant majoré par $\frac{\pi}{2}$. On a donc $\arctan(e^x - e^{-x}) \neq \pi$. On a montré $\forall x \in \mathbf{R}, f(x) \neq \pi$, ainsi f n'est pas surjective.

b) On sait que $\forall x \in Q, \exists, (p,q) \in \mathbf{Z} \times \mathbf{N}^*, x = \frac{p}{q}$. i.e. $\forall x \in Q, \exists, (p,q) \in \mathbf{Z} \times \mathbf{N}^*, x = g(p,q)$. C'est à dire que g est surjective. On a $g(2,2) = \frac{2}{2} = \frac{1}{1} = g(1,1)$. Or $(2,2) \neq (1,1)$. On a donc montré, $\exists X \in \mathbf{Z} \times \mathbf{N}^*, \exists Y \in \mathbf{Z} \times \mathbf{N}^*, X \neq Y \text{ et } g(X) = g(Y) \text{ et donc que } g \text{ n'est pas injective.}$

c) h a été vu en TD

Exercice 5. Soit f la fonction défini par $x \mapsto \arcsin(2x^2 - 1)$.

a) arcsin est défini sur [-1, 1].

Or, pour x dans \mathbf{R} , on a

$$-1 \leqslant 2x^2 - 1 \leqslant 1 \Leftrightarrow 0 \leqslant 2x^2 \leqslant 2$$
$$\Leftrightarrow 0 \leqslant x^2 \leqslant 1$$
$$\Leftrightarrow 0 \leqslant |x| \leqslant 1$$
$$\Leftrightarrow -1 \leqslant x \leqslant 1$$

Donc f est défini sur [-1,1].

De plus, soit $x \in \mathbf{R}$.

On a $f(-x) = \arcsin(2(-x) - 1) = \arcsin(2x^2 - 1) = f(x)$.

On a montré $\forall x \in \mathbf{R}, f(-x) = f(x)$ et donc que f est paire.

b) On sait que arcsin est dérivable sur]-1,1[.

Or, pour x dans [-1,1], le domaine de f, on a

$$-1 < 2x^2 - 1 < 1 \Leftrightarrow 0 < 2x^2 < 2$$

$$\Leftrightarrow 0 < x^2 < 1$$

$$\Leftrightarrow 0 < |x| < 1$$

$$\Leftrightarrow -1 < x < 1 \text{ et } x \neq 0$$

Ainsi f est dérivable sur $]-1,1[\setminus\{0\}.$

Pour x in $]-1,1[\setminus\{0\}]$, on a:

$$f'(x) = \frac{4x}{\sqrt{1 - (2x^2 - 1)^2}}$$

$$= \frac{4x}{\sqrt{1 - (4x^4 - 4x^2 + 1)}}$$

$$= \frac{4x}{\sqrt{-4x^4 + 4x^2}}$$

$$= \frac{4x}{\sqrt{4x^2(1 - x^2)}}$$

$$= \frac{4x}{|2x|\sqrt{(1 - x^2)}}$$

$$= \frac{2\operatorname{sgn}(x)}{\sqrt{(1 - x^2)}}$$

c) La fonction $g = f - 2 \arcsin$ est dérivable sur]0,1[.

Et pour
$$x \in]0,1[$$
, on a $g'(x) = \frac{2\operatorname{sgn}(x)}{\sqrt{(1-x^2)}} - 2\frac{1}{\sqrt{(1-x^2)}} = \frac{2}{\sqrt{(1-x^2)}} - \frac{2}{\sqrt{(1-x^2)}} = 0.$

On a donc $\forall x \in]0, 1[, g'(x) = 0$. Donc, g est constante sur]0, 1[

Or,
$$g(1/2) = f(1/2) - 2\arcsin(1/2) = \arcsin(-1/2) - 2\arcsin(1/2) = -\pi/6 - 2\pi/6 = -\pi/2$$
.

Donc, on a $\forall x \in]0,1[,g(x)=-\pi/2]$. Ainsi $\forall x \in]0,1[,f(x)=2\arcsin(x)-\frac{\pi}{2}]$.

Cette expression reste vraie pour 0 et 1 car $f(0) = \arcsin(-1) = -\pi/2 = 2\arcsin(0) - \pi/2$ et $f(1) = \arcsin(1) = \pi/2 = 2\arcsin(1) - \pi/2$.

Ainsi $\forall x \in [0, 1], f(x) = 2\arcsin(x) - \frac{\pi}{2}$.

Si $x \in [-1, 0]$ maintenant,

On a $-x \in [0,1]$ et $f(-x) = 2\arcsin(-x) - \frac{\pi}{2} = 2\arcsin(|x|) - \frac{\pi}{2}$.

Ainsi $\forall x \in [-1, 0], f(x) = 2\arcsin(|x|) - \frac{\pi}{2}.$

Et on conclut $\forall x \in [-1, 1], f(x) = 2\arcsin(|x|) - \frac{\pi}{2}$.

- d) On trace le graphe de f sur [0,1] puis on fait son symétrique par l'axe x=0.
- e) On sait que arcsin est dérivable en zero de dérivée 1, donc $\lim_{x\to 0} \frac{\arcsin(x) \arcsin(0)}{x} = 1$

Or, pour $x \in]0,1]$ on a : $\frac{f(x)-f(0)}{x} = \frac{2\arcsin(x)-2\arcsin(0)}{x}$.

Ainsi $\lim_{x \to 0^+} \frac{f(x) - f(0)}{x} = 2.$

Et, pour $x \in [-1, 0]$ on a : $\frac{f(x) - f(0)}{x} = \frac{2\arcsin(-x) - 2\arcsin(0)}{x} = -2\frac{\arcsin(-x) - \arcsin(0)}{-x}$.

Ainsi $\lim_{x \to 0^-} \frac{f(x) - f(0)}{x} = -2.$

Ainsi les limites en $x \to 0^+$ et la limite en $x \to 0^-$ de $\frac{f(x)-f(0)}{x}$, sont différentes et $\frac{f(x)-f(0)}{x}$, n'a donc pas de limite en 0.

Ainsi f n'est pas dérivable en 0.



