UE: Topologie et équations différentielles

Feuille d'exercices nº 1

Exercice 1. Soit A et B deux parties non vides et majorées de \mathbf{R} . Montrer les égalités et l'inégalité suivantes :

- 1. $\sup(A \cup B) = \max(\sup A, \sup B)$,
- 2. si $A \cap B \neq \emptyset$, sup $(A \cap B) \leq \min(\sup A, \sup B)$,
- $3. \, \sup(A+B) = \sup A + \sup B$

On rappelle que $A + B = \{a + b : a \in A, b \in B\}.$

Exercice 2. Soit $(E, \|\cdot\|)$ un espace vectoriel normé sur \mathbf{K} ($\mathbf{K} = \mathbf{R}$ ou \mathbf{C}). Montrer que pour tout $(x, y) \in E^2$ tel que $x \neq 0$ et $y \neq 0$, on a

$$\left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\| \le 2 \frac{\|x - y\|}{\|x\|}.$$

Exercice 3. Soit $n \in \mathbb{N}^*$. Montrer que les normes $\|\cdot\|_1$, $\|\cdot\|_2$ et $\|\cdot\|_\infty$ sur \mathbb{R}^n sont équivalentes.

Exercice 4. Pour tout $P \in \mathbf{R}[X]$, on pose

$$||P||_1 = \sum_{k=0}^n |a_k|, \quad ||P||_\infty = \max_{0 \le k \le n} |a_k| \quad \text{ où } P = \sum_{k=0}^n a_k X^k.$$

- 1. Montrer que $\|\cdot\|_1$ et $\|\cdot\|_{\infty}$ sont des normes sur $\mathbf{R}[X]$.
- 2. Ces deux normes sont-elles équivalentes?

Exercice 5. On définit, pour $j = 1, \ldots, 4$, l'application $d_j : \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ par

$$d_1(x,y) = (x-y)^2,$$
 $d_3(x,y) = |x-2y|,$
 $d_2(x,y) = \sqrt{|x-y|},$ $d_4(x,y) = |x^2 - y^2|.$

Parmi ces applications, la(les)quelle(s) défini(ssen)t une distance sur R?

Exercice 6.

- 1. Soit (X, d) un espace métrique. Soit $\phi : \mathbf{R}^+ \to \mathbf{R}^+$ une application croissante s'annulant uniquement en 0 et sous-additive, *i.e.* : pour tout $(u, v) \in (\mathbf{R}^+)^2$, $\phi(u+v) \leq \phi(u) + \phi(v)$. Montrer que $\delta = \phi \circ d$ est une distance sur X.
- 2. Montrer que la fonction $\phi: u \mapsto \frac{u}{1+u}$ satisfait les hypothèses de la question précédente.
- 3. Montrer que $d: \mathbf{R} \times \mathbf{R} \to \mathbf{R}, (x,y) \mapsto \frac{|x-y|}{1+|x-y|}$ est une distance sur \mathbf{R} , qui définit la même topologie que la distance usuelle associée à la valeur absolue, mais que ces deux distances ne sont pas Lipschitz-équivalentes.

Exercice 7.

- 1. Soit (X, d) un espace métrique, r > 0. Montrer que le diamètre de toute boule de rayon r dans X (ouverte ou fermée) est inférieur ou égal à 2r.
- 2. Soit X un ensemble muni de la distance discrète. Quel est le diamètre de $B(x, \frac{1}{2})$ pour $x \in X$?
- 3. Soit $(E, \|\cdot\|)$ un espace vectoriel normé sur **K**. Calculer le diamètre des boules (fermées et ouvertes) de E en fonction de leur rayon.

Exercice 8. Soit $E = \mathcal{C}([0,1], \mathbf{R}) = \{f : [0,1] \to \mathbf{R} : f \text{ continue}\}.$

- 1. Pour tout $f \in E$, on pose $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$. Montrer que $||\cdot||_{\infty}$ est une norme sur E. Pour $f \in E$ et r > 0, représenter graphiquement B(f, r).
- 2. Pour tout $f \in E$, on pose $||f||_1 = \int_0^1 |f(x)| dx$. Montrer que $||\cdot||_1$ est une norme sur E.
- 3. Soit $A = \{f \in E : \forall x \in [0,1], f(x) > 0\}$. Montrer que A est ouvert dans $(E, \|\cdot\|_{\infty})$ et que A n'est pas ouvert dans $(E, \|\cdot\|_1)$.
- 4. Soit $B = \{ f \in E : \exists x \in [0,1], f(x) = 0 \}$. Montrer que B est fermé dans $(E, \|\cdot\|_{\infty})$.
- 5. Les normes $\|\cdot\|_{\infty}$ et $\|\cdot\|_{1}$ sont-elles équivalentes sur E?

Exercice 9. Dans cet exercice, on munit \mathbb{R}^2 de la norme euclidienne.

1. Les parties suivantes de \mathbb{R}^2 sont-elles ouvertes? fermées?

a)
$$\mathbf{Z} \times \mathbf{Z}$$
 b) $\mathbf{Q} \times \mathbf{Q}$ c) $\left\{ (x, x^2) : x \in \mathbf{R} \right\}$ d) $\left\{ \left(\frac{1}{n}, 0 \right) : n \in \mathbf{N}^* \right\}$

2. On note $A = \left\{ \left(x, \sin\left(\frac{1}{x}\right) \right) : x > 0 \right\}$. Montrer que A est une partie de \mathbb{R}^2 qui n'est ni ouverte ni fermée. Déterminer son intérieur et son adhérence.

Exercice 10. Soit (X, d) un espace métrique.

- 1. Soit A un ouvert de X et B une partie quelconque de X. Montrer que $A \cap \overline{B} \subset \overline{A \cap B}$. En utilisant des intervalles de \mathbf{R} , montrer que cette inclusion peut ne pas être vraie si A n'est pas ouvert.
- 2. Dans **R**, donner des exemples d'ouverts A et B tels que les ensembles $A \cap \overline{B}$, $\overline{A} \cap B$, $\overline{A} \cap \overline{B}$ et $\overline{A \cap B}$ soient tous différents.

Exercice 11.

- 1. Soit (X, d) un espace métrique, U un ouvert de X. Montrer l'inclusion $U \subset \overset{\circ}{\overline{U}}$. Donner un exemple où l'inclusion est stricte.
- 2. On considère $(\mathbf{R}, |\cdot|)$.
 - (a) Déterminer l'intérieur et l'adhérence de $[0,1]\cap \mathbf{Q}.$
 - (b) Construire une partie A de \mathbf{R} telle que les ensembles suivants soient deux à deux distincts : A, \mathring{A} , $\frac{\mathring{a}}{A}$, $\frac{\mathring{a}}{A}$, $\frac{\mathring{a}}{A}$, $\frac{\mathring{a}}{A}$, $\frac{\mathring{a}}{A}$, $\frac{\mathring{a}}{A}$.

Exercice 12. Topologie induite

Soit $X = \{x \in \mathbf{R} : \sin x > 0\}$, muni de la distance induite $d : X \times X \to \mathbf{R}^+$, $(x, y) \mapsto |x - y|$. On note $A =]0, \pi[$.

- 1. Étudier si A est un ouvert de (X, d).
- 2. Étudier si A est un fermé de (X, d).

Exercice 13. On considère $X = \ell^{\infty}(\mathbf{R})$ l'espace vectoriel des suites réelles bornées. Dans cet exercice, il est commode de noter une suite réelle x de la façon suivante :

$$x: \mathbf{N} \to \mathbf{R}$$

 $n \mapsto x(n).$

On munit X de la norme $||x||_{\infty} = \sup_{n \in \mathbb{N}} |x(n)|$. On note $Y = \{x \in \mathbb{R}^{\mathbb{N}} : \lim_{n \to +\infty} x(n) = 0\}$.

- 1. Montrer que $Y \subset X$.
- 2. Montrer que Y est fermé dans $(X, \|\cdot\|_{\infty})$.
- 3. On note Z l'ensemble des suites réelles nulles à partir d'un certain rang. Montrer que Z est dense dans Y mais que Z n'est pas dense dans X.

Exercice 14. Soit (X,d) un espace métrique. Pour toute partie A de X, on définit la distance à A par

$$d(\cdot, A): X \to \mathbf{R}, \ x \mapsto d(x, A) = \inf_{y \in A} d(x, y).$$

1. Montrer que pour toute partie A de X, l'application $d(\cdot, A)$ est 1-lipschitzienne, i.e. pour tout $x \in X$, $y \in X$, on a

$$|d(x,A) - d(y,A)| \le d(x,y).$$

- 2. Soit A une partie de $X, x \in X$. Montrer que x appartient à \overline{A} si et seulement si on a d(x, A) = 0.
- 3. Soit A et B deux parties de X. Montrer que l'ensemble $U = \{x \in X : d(x,A) < d(x,B)\}$ est ouvert.
- 4. En déduire que si A et B sont deux parties fermées et disjointes de X, alors il existe deux parties U et V ouvertes et disjointes de X telles que $A \subset U$ et $B \subset V$.
- 5. Lemme d'Urysohn. Montrer que si A et B sont deux parties fermées et disjointes de X, alors il existe une application $f: X \to \mathbf{R}$ continue telle que
 - (i) pour tout $x \in A$, f(x) = 0,
 - (ii) pour tout $x \in B$, f(x) = 1,
 - (iii) pour tout $x \in X$, $0 \le f(x) \le 1$.

Indication: considérer f définie par $f(x) = \frac{d(x, A)}{d(x, A) + d(x, B)}$.

Exercice 15. Soit (X, d) un espace métrique. Montrer que tout ouvert de X peut s'écrire comme une réunion dénombrable de fermés de X.

Exercice 16. Soit (X, d) et (Y, δ) deux espaces métriques.

- 1. Soit $f: X \to Y$, $g: X \to Y$ deux applications continues.
 - (a) Montrer que $\Delta = \{x \in X : f(x) = g(x)\}$ est un fermé de X.
 - (b) Soit A une partie de X. Montrer que si A est dense dans X et si pour tout $x \in A$, f(x) = g(x) alors pour tout $x \in X$, f(x) = g(x).
- 2. (a) Montrer que si $f: X \to Y$ est une application continue alors son graphe $\Gamma_f = \{(x, f(x)) : x \in X\}$ est un fermé de $X \times Y$.
 - (b) La réciproque est-elle vraie?