L3 - Mathématiques générales et applications

UE: Topologie et équations différentielles

Feuille d'exercices nº 3

Exercice 1. Dans cet exercice, on munit \mathbb{R}^2 de la norme euclidienne.

1. Les parties suivantes de \mathbb{R}^2 sont-elles ouvertes? fermées?

$$a) \mathbf{Z} \times \mathbf{Z}$$

c)
$$\{(x, x^2) : x \in \mathbf{R} \}$$

b)
$$\mathbf{Q} \times \mathbf{Q}$$

a)
$$\mathbf{Z} \times \mathbf{Z}$$
 c) $\left\{ (x, x^2) : x \in \mathbf{R} \right\}$
b) $\mathbf{Q} \times \mathbf{Q}$ d) $\left\{ \left(\frac{1}{n}, 0 \right) : n \in \mathbf{N}^* \right\}$

2. On note $A = \left\{ \left(x, \sin\left(\frac{1}{x}\right) \right) : x > 0 \right\}$. Montrer que A est une partie de \mathbb{R}^2 qui n'est ni ouverte

Exercice 2. Topologie induite

Soit $X = \{x \in \mathbf{R} : \sin x > 0\}$, muni de la distance induite $d: X \times X \to \mathbf{R}^+, (x,y) \mapsto |x-y|$. On note $A =]0, \pi[.$

- 1. Étudier si A est un ouvert de (X, d).
- 2. Étudier si A est un fermé de (X, d).

Exercice 3.

- 1. Soit (X,d) un espace métrique, U un ouvert de X. Montrer l'inclusion $U \subset \overline{\overline{U}}$. Donner un exemple où l'inclusion est stricte.
- 2. On considère $(\mathbf{R}, |\cdot|)$.
 - (a) Déterminer l'intérieur et l'adhérence de $[0,1] \cap \mathbf{Q}$.
 - (b) Construire une partie A de $\mathbf R$ telle que les ensembles suivants soient deux à deux distincts : $A, \mathring{A}, \overline{A}, \overline{A}, \overline{A}, \overline{A}, \overline{A}, \overline{A}, \overline{A}$

Exercice 4. Soit (X, d) un espace métrique.

- 1. Soit A un ouvert de X et B une partie quelconque de X. Montrer que $A \cap \overline{B} \subset \overline{A \cap B}$. En utilisant des intervalles de \mathbf{R} , montrer que cette inclusion peut ne pas être vraie si A n'est pas ouvert.
- 2. Dans **R**, donner des exemples d'ouverts A et B tels que les ensembles $A \cap \overline{B}$, $\overline{A} \cap B$, $\overline{A} \cap \overline{B}$ et $\overline{A \cap B}$ soient tous différents.

<u>Exercice 5.</u> On considère $X = \ell^{\infty}(\mathbf{R})$ l'espace vectoriel des suites réelles bornées. Dans cet exercice, il est commode de noter une suite réelle x de la façon suivante :

$$x: \mathbf{N} \to \mathbf{R}$$

 $n \mapsto x(n).$

On munit X de la norme

$$||x||_{\infty} = \sup_{n \in \mathbf{N}} |x(n)|.$$

On note $Y = \{x \in \mathbf{R}^{\mathbf{N}} : \lim_{n \to +\infty} x(n) = 0\}.$

- 1. Montrer que $Y \subset X$.
- 2. Montrer que Y est fermé dans $(X, \|\cdot\|_{\infty})$.
- 3. On note Z l'ensemble des suites réelles nulles à partir d'un certain rang. Montrer que Z est dense dans Y mais que Z n'est pas dense dans X.

Exercice 6. Soit (X,d) un espace métrique. Pour toute partie A de X, on définit la distance à A par

$$d(\cdot, A): X \to \mathbf{R}, \ x \mapsto d(x, A) = \inf_{y \in A} d(x, y).$$

1. Montrer que pour toute partie A de X, l'application $d(\cdot, A)$ est 1-lipschitzienne, *i.e.* pour tout $x \in X$, $y \in X$, on a

$$|d(x,A) - d(y,A)| \le d(x,y).$$

- 2. Soit A une partie de $X, x \in X$. Montrer que x appartient à \overline{A} si et seulement si on a d(x, A) = 0.
- 3. Soit A et B deux parties de X. Montrer que l'ensemble $U = \{x \in X : d(x,A) < d(x,B)\}$ est ouvert.
- 4. En déduire que si A et B sont deux parties fermées et disjointes de X, alors il existe deux parties U et V ouvertes et disjointes de X telles que $A \subset U$ et $B \subset V$.
- 5. Lemme d'Urysohn. Montrer que si A et B sont deux parties fermées et disjointes de X, alors il existe une application $f: X \to \mathbf{R}$ continue telle que
 - (i) pour tout $x \in A$, f(x) = 0,
 - (ii) pour tout $x \in B$, f(x) = 1,
 - (iii) pour tout $x \in X$, $0 \le f(x) \le 1$.

Indication : considérer f définie par $f(x) = \frac{d(x, A)}{d(x, A) + d(x, B)}$.

Exercice 7. Soit (X, d) un espace métrique. Montrer que tout ouvert de X peut s'écrire comme une réunion dénombrable de fermés de X.

Exercice 8. Soit (X, d) et (Y, δ) deux espaces métriques.

- 1. Soit $f: X \to Y$, $g: X \to Y$ deux applications continues.
 - (a) Montrer que $\Delta = \{x \in X : f(x) = g(x)\}$ est un fermé de X.
 - (b) Soit A une partie de X. Montrer que si A est dense dans X et si pour tout $x \in A$, f(x) = g(x) alors pour tout $x \in X$, f(x) = g(x).
- 2. (a) Montrer que si $f: X \to Y$ est une application continue alors son graphe $\Gamma_f = \{(x, f(x)) : x \in X\}$ est un fermé de $X \times Y$.
 - (b) La réciproque est-elle vraie?