Chapitre 8

Introduction aux espaces L^p

Dans ce chapitre, (X, \mathcal{A}, μ) désignera un espace mesuré; on va travailler en identifiant les fonctions si elles coïncident μ -presque partout. Autrement dit, on écrira f=g quand $\mu(\{x\colon f(x)\neq g(x)\})=0$; en particulier, f=0 signifiera que f vaut 0 presque partout. Par exemple, si f est la fonction caractéristique de \mathbb{Q} , on pourra écrire f=0.

8.1 L'espace L^{∞}

Définition 8.1. Soit $f: X \to [0, +\infty]$ une fonction mesurable. On dit que $M \in [0, +\infty]$ est un majorant essentiel de f si $\mu(\{x: f(x) > M\}) = 0$, autrement dit, si $f \leq M$ presque partout.

On définit $||f||_{\infty}$ comme le plus petit majorant essentiel de |f|.

Définition 8.2. L'espace $L^{\infty}(X, \mathcal{A}, \mu)$, qu'on notera simplement $L^{\infty}(X)$ quand il n'y a pas de risque de confusion, est l'espace vectoriel formé par toutes les fonctions f telles que $||f||_{\infty} < +\infty^{1}$.

Proposition 8.3. $(L^{\infty}(X), \|\cdot\|_{\infty})$ est un espace normé.

Démonstration. Commençons par vérifier l'axiome de séparation : $||f||_{\infty} = 0$ est équivalent à dire que $\mu(\{x: |f(x)| > 0\}) = 0$, autrement dit que f = 0 (presque partout).

Ensuite, notons que si $\lambda \in \mathbb{R}$, alors M est un majorant essentiel de $f \in L^{\infty}(X)$ si et seulement si $|\lambda|M$ est un majorant essentiel de λf . Il suit que $||\lambda f||_{\infty} = |\lambda| ||f||_{\infty}$.

Enfin, vérifions l'inégalité triangulaire : soit $f, g \in L^{\infty}(X)$. Alors on a

$$\mu(\{x\colon |f(x)|>\|f\|_{\infty} \text{ ou } |g(x)|>\|g\|_{\infty}\})=0$$

puisque cet ensemble est la réunion de deux ensembles de mesure nulle. Par conséquent, μ -presque partout on a $|f(x)| \leq ||f||_{\infty}$ et $|g(x)| \leq ||g||_{\infty}$, donc aussi $|f(x) + g(x)| \leq |f(x)| + |g(x)| \leq ||f||_{\infty} + ||g||_{\infty}$. On vient de montrer que $||f||_{\infty} + ||g||_{\infty}$ est un majorant essentiel de f + g, ce qui revient à dire que $||f + g||_{\infty} \leq ||f||_{\infty} + ||g||_{\infty}$. \square

Proposition 8.4. L'inégalité de Hölder reste vraie pour les exposants conjugués $1, +\infty$: si f, g sont mesurables, $||f||_1 < +\infty$ et $||g||_{\infty} < +\infty$, alors fg est intégrable et $||fg||_1 \le ||f||_1 ||g||_{\infty}$.

Démonstration. Il suffit de noter que, μ -presque partout, on a $|g(x)| \leq ||g||_{\infty}$, et donc $|f(x)g(x)| \leq |f(x)|||g||_{\infty}$. En intégrant cette inégalité, on obtient bien

$$||fg||_1 = \int_X |f(x)g(x)| d\mu \le \int_X |f(x)| ||g||_\infty d\mu = ||f||_1 ||g||_\infty.$$

8.2 Les espaces L^p

Définition 8.5. Soit $p \in [1, +\infty[$. L'espace $L^p(X, \mathcal{A}, \mu)$, noté $L^p(X)$ quand il n'y a pas de risque de confusion, est l'espace vectoriel formé par les fonctions f telles que $||f||_p < +\infty$.

On voudrait montrer que $\|\cdot\|_p$ est une norme sur $L^p(X)$; l'axiome de séparation n'est pas difficile à montrer : on a bien $\|0\|_p = 0$; et réciproquement, si $\|f\|_p = 0$ alors $\int_X |f(x)|^p d\mu = 0$, ce qui n'est possible (comme $|f(x)|^p \ge 0$ pour tout x) que si $|f(x)|^p = 0$ μ -presque partout, c'est-à-dire si f = 0 (presque partout).

L'axiome d'homogénéité se vérifie également très facilement : pour $f \in L^p(X)$ et $\lambda \in \mathbb{R}$,

$$|\lambda f|_p = \left(\int_X |\lambda f(x)|^p d\mu\right)^{\frac{1}{p}} = \left(|\lambda|^p \int_X |f(x)|^p d\mu\right)^{\frac{1}{p}} = |\lambda| ||f||_p.$$

L'inégalité triangulaire est plus difficile à établir.

Théorème 8.6 (Inégalité de Minkowski). Soit $p \in [1, +\infty]$ et $f, g \in L^p(X)$. Alors $f + g \in L^p(X)$ et $||f + g||_p \le ||f||_p + ||g||_p$.

Démonstration. On a déjà traité le cas $p=+\infty$, et le cas p=1 est simplement l'inégalité triangulaire habituelle. Supposons donc $p \in]1, +\infty[$ et $f, g \in L^p(X)$.

Commençons par montrer que $||f+g||_p < +\infty$. Comme $x \mapsto x^p$ est convexe et croissante, on a pour tout x que

$$\left(\left| \frac{1}{2} f(x) + \frac{1}{2} g(x) \right| \right)^p \leq \left(\left| \frac{1}{2} f(x) \right| + \left| \frac{1}{2} g(x) \right| \right)^p \leq \frac{1}{2} |f(x)|^p + \frac{1}{2} |g(x)|^p$$

En intégrant cette inégalité, on obtient que

$$\frac{1}{2^p} \|f + g\|_p^p \le \frac{1}{2} (\|f\|_p^p + \|g\|_p^p)) \ .$$

Ceci nous prouve que $||f + g||_p < +\infty$.

Maintenant, notons $q = \frac{p}{p-1}$ l'exposant conjugué de p. Ci-dessous, on va utiliser l'inégalité de Hölder, et le fait que

$$||f+g|^{p-1}||_q = \left(\int_Y |f+g|^{(p-1)q} d\mu\right)^{\frac{1}{q}} = \left(\int_Y |f+g|^p\right)^{1-\frac{1}{p}} = ||f+g||_p^{p-1}.$$

Alors on a

П

$$\begin{split} \|f+g\|_p^p &= \int_X |f+g|^p d\mu \\ &\leq \int_X (|f|+|g|)|f+g|^{p-1} d\mu \\ &= \int_X |f||f+g|^{p-1} d\mu + \int_X |g||f+g|^{p-1} d\mu \\ &\leq \|f\|_p \, \big\| |f+g|^{p-1} \big\|_q + \|g\|_p \, \big\| |f+g|^{p-1} \big\|_q \\ &= (\|f\|_p + \|g\|_p) \, \big\| |f+g|^{p-1} \big\|_q \\ &= (\|f\|_p + \|g\|_p) \big\| f+g \big\|_p^{p-1} \end{split}$$

Si jamais $||f+g||_p=0$ on n'a rien à démontrer; sinon, en divisant des deux côtés par $||f+g||_p^{p-1}$ on obtient finalement $||f+g||_p \le ||f||_p + ||g||_p$.

Il y aurait beaucoup de choses à dire sur les espaces L^p ; en particulier, étudier la convergence de suites dans les espaces L^p et ses relations avec d'autres modes de convergence (en proba, convergence simple) est un sujet riche et important. Dans la fin de ce chapitre, on va supposer que (X, \mathcal{A}, μ) est un espace de probabilité (pour se simplifier la vie), justifier le choix de la notation $\|f\|_{\infty}$ et voir que la convergence L^p entraîne la convergence en probabilité.

i. Répétons pour la dernière fois que deux fonctions sont identifiées si elles coı̈ncident presque partout; notons que si f=g presque partout alors $\|f\|_{\infty}=\|g\|_{\infty}$.

Proposition 8.7. Soit (X, \mathcal{A}, μ) un espace de probabilité et $f: X \to [0, +\infty]$ une fonction mesurable. Alors on a

$$||f||_{\infty} = \lim_{p \to +\infty} ||f||_p$$
.

Démonstration. Commençons par remarquer que l'on a toujours

$$||f||_p = \left(\int_X |f|^p d\mu\right)^{\frac{1}{p}} \le (||f||_{\infty}^p \mu(X))^{\frac{1}{p}} = ||f||_{\infty}.$$

Par conséquent, si $\|f\|_p \to +\infty$ quand $p \to +\infty$ alors $\|f\|_{\infty} = +\infty$. Pour voir la réciproque, notons que pour $t < \|f\|_{\infty}$ fixé, l'ensemble $A_t = \{x \colon |f(x)| > t\}$ est de mesure strictement positive, par conséquent

$$||f||_p \ge (t^p \mu(A_t))^{\frac{1}{p}} = t\mu(A_t)^{\frac{1}{p}} \to t \text{ quand } p \to +\infty.$$

Ceci montre que si $\|f\|_{\infty} = +\infty$ alors $\|f\|_p$ tend vers $+\infty$; mais aussi que, si $\|f\|_{\infty} < +\infty$ on a pour tout $\varepsilon > 0$ que pour p suffisamment grand $\|f\|_{\infty} - \varepsilon \le \|f\|_p \le \|f\|_{\infty}$.

Définition 8.8. Soit (X, \mathcal{A}, μ) un espace de probabilité. Une variable aléatoire est une fonction mesurable $f \colon X \to [0, +\infty]$.

Remarque 8.9. Ici nos notations sont différentes de celles qui sont communément utilisées en probabilités : souvent la variable aléatoire est notée X, l'espace de départ Ω , et la mesure de probabilité \mathbb{P} . Cela ne jouera pas vraiment de rôle ici donc on garde les notations utilisées précédemment dans le cours.

Définition 8.10. Soit (X, A, μ) un espace de probabilité, et (f_n) une suite de variables aléatoires. On dit que f_n converge en probabilité vers une variable aléatoire f si, pour tout $\varepsilon > 0$, on a

$$\lim_{n \to +\infty} \mu\left(\left\{x \colon |f_n(x) - f(x)| \ge \varepsilon\right\}\right) = 0.$$

Théorème 8.11. Soit $p \in [1, +\infty]$, (X, \mathcal{A}, μ) un espace de probabilité, et (f_n) une suite de variables aléatoires telles que $f_n \in L^p(X)$ pour tout n et la suite (f_n) converge vers f dans $L^p(X, \mu)$. Alors (f_n) converge vers f en probabilité.

Démonstration. Si $p=+\infty$ le résultat est immédiat puisque quel que soit $\varepsilon>0$, pour n suffisamment grand on a $\|f_n-f\|_{\infty}<\varepsilon$ et donc $\mu\left(\{x\colon |f_n(x)-f(x)|\geq \varepsilon\}\right)=0$.

Supposons donc $p < +\infty$, fixons $\varepsilon > 0$ et considérons l'ensemble $A_n = \{x : |f_n(x) - f(x)| \ge \varepsilon\}$. Sur A_n , on a $|f_n - f|^p \ge \varepsilon^p$, et donc

$$\varepsilon^p \mu(A_n) \le \int_X |f_n - f|^p d\mu$$
.

Autrement dit, $\mu(A_n) \leq \frac{\|f_n - f\|_p^p}{\varepsilon^p}$, et le terme de droite tend vers 0 quand n tend vers $+\infty$ puisque $\|f_n - f\|_p$ tend vers 0.

On pourrait aussi se demander quel est le rapport entre convergence L^p et convergence presque sûre. Le résultat suivant est une conséquence facile du théorème de convergence dominée, et la preuve est laissée en exercice.

Proposition 8.12. Soit (X, A, μ) un espace mesuré, $p \in [1, +\infty[$, et (f_n) une suite de fonctions dans $L^p(X)$ telles que $f_n(x)$ converge simplement vers une limite f(x) (presque partout), et supposons qu'il existe une fonction $g \in L^p(X)$ telle que pour tout n on ait $|f_n(x)| \le g(x)$ presque partout. Alors $f \in L^p(X)$ et $||f_n - f||_p \to 0$ quand p tend vers $+\infty$.

Réciproquement, on a le résultat suivant, qu'on se contente de mentionner ici sans démonstration.

Théorème 8.13. Soit (X, A, μ) un espace mesuré, $p \in [1, +\infty[$, et (f_n) une suite d'éléments de $L^p(X)$ qui converge vers f dans $(L^p(X), \|\cdot\|_p)$. Alors il existe une suite extraite (f_{n_k}) telle que $(f_{n_k}(x))$ tend vers f(x) presque partout.

Exercice 8.14. Soit (X, A, μ) un espace mesuré, et (f_n) une suite d'éléments de $L^{\infty}(X)$ qui converge vers f dans $(L^{\infty}(X), \|\cdot\|_{\infty})$. Montrer que $(f_n(x)$ converge vers f(x) presque partout. Montrer que la réciproque est fausse.