Feuille d'exercices VI.

Intégrales à paramètres

- **Exercice 1.** 1. Soit $I(x) = \int_0^{+\infty} \cos(2xt)e^{-t^2} dt$, pour $x \in \mathbb{R}$. Prouver que I est de classe \mathcal{C}^1 sur \mathbb{R} .
 - 2. Chercher une relation simple entre I et I'.
 - 3. En déduire la valeur de I(x) pour tout réel x (on admet que $I(0) = \frac{\sqrt{\pi}}{2}$).

Exercice 2. Pour
$$x \geq 0$$
, on pose $\varphi(x) = \int_0^1 e^{-x/t} dt$.

Montrer que φ est de classe C^2 sur $]0, +\infty[$ et que $\varphi''(x) = \frac{e^{-x}}{x}$ pour x > 0.

Exercise 3. Pour
$$x \ge 0$$
, on pose $F(x) = \left(\int_0^x \exp(-t^2) dt\right)^2 \text{ et } G(x) = \int_0^1 \frac{\exp(-x^2(1+t^2))}{1+t^2} dt$.

- 1. (a) Montrer que F et G sont de classe C^1 sur \mathbb{R}^+ .
 - (b) Calculer F'(x) + G'(x) pour $x \ge 0$.
- 2. En déduire la valeur de $I = \int_0^\infty \exp(-t^2) dt$ puis de $J = \int_{-\infty}^{+\infty} \exp(-t^2/2) dt$.

Exercice 4. Soit
$$f$$
 la fonction définie sur \mathbb{R}_+ par $f(t) = \int_0^{+\infty} \left(\frac{\sin(x)}{x}\right)^2 e^{-tx} dx$.

- 1. Montrer que f est continue sur \mathbb{R}_+ et deux fois dérivable sur \mathbb{R}_+^* .
- 2. Calculer f'' et les limites en $+\infty$ de f et f'.
- 3. En déduire une expression simple de f.
- 4. Donner la valeur de $\int_0^{+\infty} \left(\frac{\sin(x)}{x}\right)^2 dx$ et $\int_0^{+\infty} \frac{\sin(x)}{x} dx$ (pour la deuxième intégrale, on pourra penser à utiliser la relation $\sin^2(x) = \frac{1 \cos(2x)}{2}$ et une intégration par parties).

- **Exercice 5.** 1. On fixe un réel x. Montrer que l'intégrale $\int_1^{+\infty} \frac{t-1}{t^x \ln(t)} dt$ converge si et seulement si x > 2. Dans la suite de l'exercice, on pose $F(x) = \int_1^{+\infty} \frac{t-1}{t^x \ln(t)} dt$.
 - 2. Montrer que F est de classe C^1 sur $]2, +\infty[$ et donner une formule pour la dérivée de F qui ne fasse pas intervenir d'intégrale.
 - 3. Déterminer la limite de F(x) quand x tend vers $+\infty$.
 - 4. Donner une formule exprimant la valeur de F(x) pour tout x > 2 et ne faisant pas intervenir d'intégrale.
- **Exercice 6.** On pose $I(\alpha) = \int_0^{+\infty} \frac{\ln(1+\alpha x^2)}{1+x^2} dx$ pour $\alpha \ge 0$.
 - 1. Montrer que $0 \le I(\alpha) < +\infty$ pour tout $\alpha \ge 0$.
 - 2. Montrer que la fonction $I: \mathbb{R}_+ \to \mathbb{R}$ est dérivable sur \mathbb{R}_+^* et exprimer $I'(\alpha)$, pour $\alpha > 0$, sous la forme d'une intégrale.
 - 3. Montrer que I est continue en 0.
 - 4. (a) Soit $\alpha > 0, \alpha \neq 1$. Décomposer la fraction rationnelle $\frac{x^2}{(1+x^2)(1+\alpha x^2)}$ en éléments simples.
 - (b) En déduire la valeur de $I'(\alpha)$ pour $\alpha > 0$.
 - (c) Calculer $I(\alpha)$ pour $\alpha \geq 0$.
- **Exercice 7.** On pose pour $x \ge 0$: $f(x) = \int_0^{+\infty} \frac{\ln(x^2 + t^2)}{1 + t^2} dt$. Montrer que la fonction f est bien définie et dérivable sur $[0, +\infty[$. Calculer explicitement f' et en déduire f (on calculera f(0) à l'aide du changement de variable u = 1/t).
- **Exercice 8.** Pour $x \in \mathbb{R}$, on pose $F(x) = \int_0^\infty \frac{\cos(xt)}{1+t^2} dt$ et $G(x) = \int_0^\infty \frac{1-\cos(xt)}{t^2(1+t^2)} dt$.
 - 1. Montrer que F et G sont continues sur \mathbb{R} . Calculer F(0) et G(0).
 - 2. Etablir l'égalité valable pour tout réel x:

$$F(0) - F(x) + G(x) = C|x|$$
, où $C = \int_0^\infty \frac{\sin^2(t)}{t^2} dt$.

- 3a. Montrer que G est de classe C^2 sur \mathbb{R} et vérifie G''(x) = F(x) pour tout réel x.
- 3b. En utilisant la question 2, en déduire que F est de classe C^2 sur \mathbb{R}_+^* et vérifie une équation différentielle du second ordre.
- 3c. En déduire l'expression de F(x) pour x > 0 (on pourra remarquer qur la fonction F est bornée sur \mathbb{R}). Calculer enfin F(x) pour tout réel x.
- 4. Déduire de tout cela la valeur de la constante C.