Fiche 10 - Séries de Fourier

Exercice 1. Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction 2π -périodique définie par

$$f(x) = \begin{cases} 1 & \text{pour } x \in [0, \pi] \\ 0 & \text{pour } x \in]\pi, 2\pi[. \end{cases}$$

- 1. Dessiner le graphe de f sur $[-2\pi, 2\pi]$.
- 2. Calculer les coefficients de Fourier a_n et b_n de f.
- 3. En déduire la série de Fourier de f qu'on notera Sf.
- 4. Pour quelles valeurs de x a-t-on Sf(x) = f(x)?
- 5. En déduire, en fonction de $x \in \mathbb{R}$, la valeur de la somme

$$\sum_{n=0}^{+\infty} \frac{\sin((2n+1)x)}{2n+1}.$$

Exercice 2. Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction 2π -périodique, paire et telle que

$$f(x) = 2x - \pi \qquad \text{sur } [0, \pi].$$

- 1. Dessiner le graphe de f sur une $[-3\pi, 3\pi]$ et exprimer f(x) sur $[\pi, 2\pi]$.
- 2. Déterminer la série de Fourier de f. On note Sf(x) la somme de la série.
- 3. Pour quelles valeurs de x a-t-on Sf(x) = f(x)?
- 4. En déduire la valeur de la somme :

$$\sum_{p\geqslant 0} \frac{1}{(2p+1)^2}.$$

Exercice 3. Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction 2π -périodique et vérifiant

$$f(x) = x$$
 sur $[-\pi, \pi]$.

- 1. Dessiner le graphe de f sur l'intervalle $[-3\pi, 3\pi]$.
- 2. Calculer les coefficients de Fourier a_n et b_n de f.
- 3. En déduire la série de Fourier de f qu'on notera Sf.
- 4. Pour quelles valeurs de x a-t-on Sf(x) = f(x)?
- 5. En déduire la valeur de la somme :

$$\sum_{p\geqslant 0} \frac{(-1)^p}{2p+1}.$$

Exercices supplémentaires

Exercice 4. Soit $\alpha \in]0,\pi[$ et $f:\mathbb{R} \to \mathbb{R}$ la fonction 2π -périodique définie sur $[-\pi,\pi]$ par

$$f(x) = \begin{cases} 1 & \text{si } x \in [-\alpha, \alpha] \\ 0 & \text{sinon.} \end{cases}$$

- 1. Dessiner le graphe f sur $[-2\pi, 2\pi]$.
- 2. Calculer les coefficients de Fourier a_n et b_n de f.
- 3. En déduire la série de Fourier de f.
- 4. En déduire la somme de la série

$$\sum_{n=1}^{+\infty} \frac{\sin(n\alpha)^2}{n^2}.$$

Exercice 5. Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction 2π -périodique, impaire et telle que

$$f(t) = \frac{\pi - t}{2}$$
 sur $]0, \pi].$

- 1. Dessiner le graphe de f sur une période.
- 2. Etudier la convergence de la série de Fourier de f.
- 3. Calculer la série de Fourier de f (avec les fonctions sin et \cos).
- 4. En déduire la valeur des sommes suivantes :

$$\sum_{n\geqslant 1} \frac{\sin n}{n} \quad \text{et} \quad \sum_{n\geqslant 1} \frac{1}{n^2}.$$

Exercice 6. Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction 2π -périodique définie sur $[-\pi, \pi]$ par $f(x) = x^2$.

- 1. Dessiner le graphe de f sur l'intervalle $[-3\pi, 3\pi]$.
- 2. Calculer les coefficients de Fourier de f.
- 3. Pour quelles valeurs de $x \in \mathbb{R}$, a-t-on Sf(x) = f(x)?
- 4. Calculer les sommes des séries numériques suivantes

(a)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2}$$
, (b) $\sum_{n=1}^{+\infty} \frac{1}{n^4}$.

Exercice 7. Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction 2π -périodique définie sur $[-\pi, \pi]$ par $f(x) = 1 - \frac{x^2}{\pi^2}$.

- 1. Dessiner le graphe de f sur l'intervalle $[-3\pi, 3\pi]$.
- 2. Calculer les coefficients de Fourier de f.
- 3. Pour quelles valeurs de $x \in \mathbb{R}$, a-t-on Sf(x) = f(x)?
- 4. Calculer les sommes des séries numériques suivantes

(a)
$$\sum_{n=1}^{+\infty} \frac{1}{n^2 + 1}$$
, (b) $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 + 1}$.

Exercice 8. Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction 2π -périodique définie sur $[-\pi, \pi[$ par $f(x) = \operatorname{ch} x.$

- 1. Dessiner le graphe de f sur l'intervalle $[-3\pi, 3\pi]$.
- 2. Calculer les coefficients de Fourier de f.
- 3. Pour quelles valeurs de $x \in \mathbb{R}$, a-t-on Sf(x) = f(x)?
- 4. Calculer les sommes des séries numériques suivantes

(a)
$$\sum_{n=1}^{+\infty} \frac{1}{n^2}$$
, (b) $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2}$, (c) $\sum_{n=1}^{+\infty} \frac{1}{n^4}$.

Exercice 9. Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction 4π -périodique et paire définie sur $[0, 2\pi]$ par $f(x) = \pi - x$.

- 1. Dessiner le graphe de f sur l'intervalle $[-6\pi, 6\pi]$.
- 2. Calculer les coefficients de Fourier de f.
- 3. Pour quelles valeurs de $x \in \mathbb{R}$, a-t-on

$$\pi - x = \frac{4}{\pi} \sum_{n=0}^{+\infty} \frac{\cos((n + \frac{1}{2})x)}{(2n+1)^2}.$$

Exercice 10. Soit $f:[0,\pi]\to\mathbb{R}$ la fonction définie par $f(x)=x(\pi-x)$.

1. Déterminer une suite réelle $(a_n)_{n\in\mathbb{N}}$ telle que pour tout $x\in[0,\pi]$

$$f(x) = \sum_{n=0}^{+\infty} a_n \cos(nx).$$

2. Déterminer une suite réelle $(b_n)_{n\in\mathbb{N}}$ telle que pour tout $x\in[0,\pi]$

$$f(x) = \sum_{n=0}^{+\infty} b_n \sin(nx).$$

3. Calculer les sommes des séries numériques suivantes

(a)
$$\sum_{n=1}^{+\infty} \frac{1}{n^2}$$
, (b) $\sum_{n=1}^{+\infty} \frac{1}{n^4}$, (c) $\sum_{n=1}^{+\infty} \frac{1}{n^6}$.

Exercice 11. On considère l'équation differentielle

$$f''(x) + Cf(x) = \cos^2(\omega x), \tag{E}$$

où $\omega > 0$ et $C \in \mathbb{R}$.

- 1. Développer la fonction $h(x) := \cos^2(\omega x)$ en série de Fourier.
- 2. Déterminer les valeurs C pour les quelles (E) admet une solution périodique (développable en série de Fourier) de période $\frac{2\pi}{\omega}$ et déterminer cette solution.

Exercice 12. Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction continue, C^1 par morceau et 2π -périodique. On cherche les solutions 2π -périodiques de l'équation différentielle

$$y'' - y = f.$$

- 1. Montrer qu'il existe au plus une solution 2π -périodique.
- 2. Trouver une telle solution pour $f(t) = e^{ikt}$, avec $k \in \mathbb{Z}$.
- 3. En décomposant f en série de Fourier, trouver une solution 2π -périodique de cette équation sous forme de série.
- 4. Justifier la convergence de la série pour la solution.