2. Généralités sur les groupes - Groupes de matrices

1. Sous-groupes.

Exercice 2.1 1. Quels sont les sous-groupes de $(\mathbb{Z}, +)$?

2. Déterminer tous les sous-groupes de $(\mathbb{Z}, +)$ contenant $12\mathbb{Z}$.

Exercice 2.2 Soient $m, n \ge 1$.

- 1. A quelle condition $m\mathbb{Z} \supseteq n\mathbb{Z}$?
- 2. Que vaut $m\mathbb{Z} \cap n\mathbb{Z}$? Donner des exemples.
- 3. Vérifier que $m\mathbb{Z} + n\mathbb{Z} := \{a + b \colon a \in m\mathbb{Z}, b \in n\mathbb{Z}\}$ est un sous-groupe de $(\mathbb{Z}, +)$.
- 4. Déterminer le sous-groupe $m\mathbb{Z} + n\mathbb{Z}$. Donner des exemples.

Exercice 2.3 Soit $n \in \mathbb{N}^*$, on note $\mathbb{U}_n(\mathbb{C})$ l'ensemble $\{z \in \mathbb{C} | z^n = 1\}$ des racines n-ième de l'unité. Montrer que $\mathbb{U}_n(\mathbb{C})$ est une sous-groupe de (\mathbb{C}^*, \times) .

On note $\mathbb{U}(\mathbb{C})$ l'ensemble $\{z \in \mathbb{C} | \exists k \in \mathbb{N}^*, z^k = 1\}$. Montrer que $\mathbb{U}(\mathbb{C})$ est un sous-groupe de (\mathbb{C}^*, \times) .

- **Exercice 2.4** 1. Montrer que l'ensemble des matrices diagonales dans $GL_2(\mathbb{R})$ forme un sous-groupe de $GL_2(\mathbb{R})$.
 - 2. Est-ce encore le cas pour l'ensemble des matrices diagonalisables dans $\operatorname{GL}_2(\mathbb{R})$? (On pourra considérer les matrices $A = \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.)
 - 3. Et pour l'ensemble des matrices trigonalisables dans $GL_2(\mathbb{R})$? (On pourra considérer les matrices $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ et $C = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.)
 - 4. Que peut-on dire si on remplace $GL_2(\mathbb{R})$ par $GL_2(\mathbb{C})$?
 - 5. Que peut-on dire si on remplace $GL_2(\mathbb{R})$ par $GL_n(\mathbb{R})$ avec n > 2?

Exercice 2.5 Soit G un groupe.

- 1. Soit $a \in G$. Montrer que $Z(a) = \{x \in G | xa = ax\}$ est un sous-groupe de G.
- 2. Soit S un sous-ensemble de G. Montrer que $Z(S) = \{x \in G | \forall s \in S, xs = sx\}$ est un sous-groupe de G.
- 3. Montrer que Z(G) est un groupe abélien. On appelle Z(G) le **centre** de G.

Exercice 2.6 Soit E un espace vectoriel de dimension finie n sur \mathbb{C} .

- 1. Montrer que l'ensemble des homothéties de $E, H = \{h_{\lambda} : x \mapsto \lambda x | \lambda \in \mathbb{C}^*\}$ est un sous-groupe de GL(E).
- 2. Montrer que $H \subset Z(GL(E))$.
- 3. Soit $u \in GL(E)$. Montrer que si pour tout $x \in E$, le vecteur u(x) est colinéaire à x alors u appartient à H.
- 4. Soit $u \in Z(GL(E))$ tel que $u \notin H$. Montrer qu'il existe des éléments $x, f_3, \ldots, f_n \in E$ tels que $\mathcal{B} = (x, u(x), f_3, \ldots, f_n)$ est une base de E.
- 5. Soit $v \in GL(E)$ l'endomorphisme dont la matrice dans la base \mathcal{B} est

$$\begin{pmatrix} 1 & 0 & \cdot & \cdot & \cdot & 0 \\ 1 & 1 & 0 & \cdot & \cdot & \cdot \\ 0 & 0 & 1 & \cdot & \cdot & \cdot \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdot & \cdot & \cdot & \cdot & 1 \end{pmatrix}.$$

Calculer $u \circ v(x)$, $v \circ u(x)$.

- 6. En déduire que Z(GL(E)) = H.
- 7. Vérifier que le même schéma de preuve permet de montrer que

$$Z(SL(E)) = Z(GL(E)) \cap SL(E).$$

8. Montrer que Z(SL(E)) est isomorphe à $\mathbb{U}_n(\mathbb{C})$.

Exercice 2.7 Soit G un groupe.

- 1. Montrer que si $\{H_i, i \in I\}$ est une famille de sous-groupes de G alors $\bigcap_{i \in I} H_i$ est un sous-groupe de G.
- 2. Donner une condition nécéssaire et suffisante pour que l'union de deux sous-groupes de G soit un sous-groupe de G.

Exercice 2.8 Soit G un groupe et H et K deux sous-groupes de G. On pose

$$HK = \{ hk \in G | h \in H, k \in K \}.$$

Montrer que HK est un sous-groupe de G si et seulement si HK = KH.

Exercice 2.9 Soient G_1 et G_2 deux groupes. Montrer que le produit direct $G_1 \times G_2$ est abélien si et seulement si les groupes G_1 et G_2 sont abéliens.

2. Morphismes.

Exercice 2.10 Montrer que tout goupe monogène infini est isomorphe à \mathbb{Z} .

Exercice 2.11 Parmi les groupes suivants lequels sont isomorphes?

 $(\mathbb{Z},+) \qquad (\mathbb{R},+)$

 $(\mathbb{Z}/6\mathbb{Z},+)$ \mathbb{R}^* avec la multiplication

 $(\mathbb{Z}/2\mathbb{Z},+)$ \mathbb{R}^{*+} avec la multiplication

 $(17\mathbb{Z}, +)$ \mathbb{Q}^* avec la multiplication

 $(\mathbb{Q},+)$ \mathbb{C}^* avec la multiplication

 $(3\mathbb{Z},+)$ le sous-groupe $\langle \pi \rangle$ de \mathbb{R}^* avec la multiplication

Exercice 2.12 Combien y-a-t-il d'homomorphismes de \mathbb{Z} dans \mathbb{Z} ? De \mathbb{Z} dans $\mathbb{Z}/2\mathbb{Z}$? De $\mathbb{Z}/12\mathbb{Z}$ dans $\mathbb{Z}/6\mathbb{Z}$?

Exercice 2.13 Montrer que les matrices

$$\left(\begin{array}{cc}1&0\\0&1\end{array}\right),\left(\begin{array}{cc}-1&-1\\1&0\end{array}\right),\left(\begin{array}{cc}0&1\\-1&-1\end{array}\right),\left(\begin{array}{cc}0&1\\1&0\end{array}\right),\left(\begin{array}{cc}1&0\\-1&-1\end{array}\right),\left(\begin{array}{cc}-1&-1\\0&1\end{array}\right)$$

forment un sous-groupe de $GL_2(\mathbb{R})$ isomorphe à $GL_2(\mathbb{Z}/2\mathbb{Z})$.

Exercice 2.14 Montrer que l'application de $GL_n(\mathbb{C}) \to \mathbb{C}^*$ qui a une matrice associe son déterminant est un morphisme de groupes.

3. Groupe orthogonal

Exercice 2.15 Soit E un espace euclidien de dimension n sur \mathbb{R} .

- 1. Montrer que dans toute base orthonormée de \mathbb{R}^n , la matrice d'un endomorphisme orthogonal $u \in O(E)$ est une matrice orthogonale.
- 2. En déduire que $O_n(\mathbb{R})$ et O(E) sont isomorphes.

Exercice 2.16 Pour $\theta \in \mathbb{R}$ on définit la matrice $R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.

- 1. La multiplication par R_{θ} a quel effet sur un vecteur v de \mathbb{R}^2 ?
- 2. Montrer que pour tout $\theta_1, \theta_2 \in \mathbb{R}$ on a $R_{\theta_1}R_{\theta_2} = R_{\theta_1+\theta_2}$.
- 3. Montrer que l'application $f:(\mathbb{R},+)\to SO_2(\mathbb{R})$ définie par $\theta\mapsto R_\theta$ est un morphisme surjectif de groupes. On appelera dorénavant les élément de $SO_2(\mathbb{R})$ des rotations.

- 4. En déduire que $SO_2(\mathbb{R})$ est un groupe abélien.
- 5. Quel est le noyau de f?
- **Exercice 2.17** 1. Écrire la matrice dans la base canonique (e_1, e_2) de \mathbb{R}^2 de la réflexion par rapport à $\mathbb{R}e_1$. Donner ensuite la matrice de cette même réflexion dans la base orthonormée (f_1, f_2) , avec $f_1 = \frac{e_1 + e_2}{\sqrt{2}}$ et $f_2 = \frac{-e_1 + e_2}{\sqrt{2}}$.
 - 2. Soit $\theta \in \mathbb{R}$. Donner la matrice dans la base (e_1, e_2) de la réflexion par rapport à $\mathbb{R}((\cos \theta)e_1 + (\sin \theta)e_2)$.
- Exercice 2.18 1. Que dire de la composée de deux réflexions?
 - 2. Calculer le produit $\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ en raisonnant uniquement géométriquement. Vérifier ensuite le résultat.
- **Exercice 2.19** 1. Montrer que les éléments de $O_2(\mathbb{R}) \setminus SO_2(\mathbb{R})$ sont de la forme $\begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$ pour $\theta \in \mathbb{R}$.
 - 2. En utilisant l'exercice 2.17, montrer que les éléments de $O_2(\mathbb{R}) \setminus SO_2(\mathbb{R})$ sont des réflexions.
- Exercice 2.20 1. Montrer que la composée d'une réflexion et une rotation est une réflexion.
 - 2. En déduire que toute rotation peut s'écrire comme composée de deux réflexions.
- **Exercice 2.21** Soit ABCD un carré du plan \mathbb{R}^2 dont les diagonales se coupent en (0,0). On note D_4 l'ensemble des isométries de \mathbb{R}^2 qui fixent globalement ce carré. Montrer que D_4 est un sous-groupe de $O(\mathbb{R}^2)$. Est-ce que D_4 dépend du choix du carré? (Le groupe D_4 s'appelle quatrième groupe diédral.) Décrire les éléments de D_4 . Le groupe D_4 est-il abélien? Décrire tous les sous-groupes de D_4 .