Université Claude Bernard Lyon 1 Licence « Sciences et technologie » Unité d'enseignement Math I Algèbre

CONTRÔLE FINAL

9 janvier 2015 — durée 2 h

Corrigé

Question 1. Montrer que pour tout entier $n \geq 1$ on a

$$\sum_{k=1}^{n} (-1)^{k} k^{2} = (-1)^{n} \frac{n(n+1)}{2}.$$

Solution. Par récurrence sur $n \ge 1$. Initialisation : Pour n = 1 on a

$$\sum_{k=1}^{1} (-1)^k k^2 = (-1)^1 1^2 = -1 = (-1)^1 \frac{1(1+1)}{2}.$$

Hérédité : Supposons l'énoncé vrai pour n. Alors

$$\sum_{k=1}^{n+1} (-1)^k k^2 = \left(\sum_{k=1}^n (-1)^k k^2\right) + (-1)^{n+1} (n+1)^2 = (-1)^n \frac{n(n+1)}{2} + (-1)^{n+1} (n+1)^2$$
$$= (-1)^{n+1} \frac{2(n+1)^2 - n(n+1)}{2} = (-1)^{n+1} \frac{(n+1)(n+2)}{2}.$$

L'énoncé est donc vrai pour tout entier $n \ge 1$.

Question 2.

- 1. Calculer le pgcd de 224 et 119.
- 2. Donner $(u, v) \in \mathbb{Z}^2$ tel que $224u + 119v = \operatorname{pgcd}(224, 119)$.
- 3. Déterminer l'ensemble des solutions pour $x \in \mathbb{Z}$ du système

$$x \equiv 3 \mod 224$$
 et $x \equiv 17 \mod 119$.

Solution.

1.

$$224 = 119 + 105$$
$$119 = 105 + 14$$
$$105 = 7 \cdot 14 + 7$$
$$14 = 2 \cdot 7.$$

On a donc pgcd(224, 119) = 7.

2.

$$7 = 105 - 7 \cdot 14$$

= $105 - 7 \cdot (119 - 105) = 8 \cdot 105 - 7 \cdot 119$
= $8 \cdot (224 - 119) - 7 \cdot 119 = 8 \cdot 224 - 15 \cdot 119$.

Ainsi on peut prendre (u, v) = (8, -15).

3. On a $17 - 3 \equiv 0 \mod 7$. Il y a donc une solution. D'après la partie 2. on a

$$1 = \frac{7}{7} = 8 \cdot \frac{224}{7} - 15 \cdot \frac{119}{7} = 8 \cdot 32 - 15 \cdot 17.$$

On pose $x_0 = 17 \cdot 8 \cdot 32 - 3 \cdot 15 \cdot 17 = 17 \cdot (256 - 45) = 17 \cdot 211$. Alors

$$x_0 = 17(8 \cdot 32 - 15 \cdot 17) + (17 - 3) \cdot 15 \cdot 17 = 17 + 2 \cdot 15 \cdot 119 \equiv 17 \mod 119$$

et

$$x_0 = (17 - 3) \cdot 8 \cdot 32 + 3(8 \cdot 32 - 15 \cdot 17) = 2 \cdot 8 \cdot 224 \equiv 3 \mod 224.$$

On a donc trouve une solution particulière x_0 . Si x est une autre solution, alors $x - x_0 \equiv 0$ mod 224 et $x - x_0 \equiv 0 \mod 119$. Ainsi

$$x - x_0 \equiv 0 \mod \operatorname{ppcm}(224, 119) = \frac{224 \cdot 119}{\operatorname{pgcd}(224, 119)} = \frac{224 \cdot 119}{7} = 224 \cdot 17,$$

et $x-x_0=224\cdot 17\cdot n\mathbb{Z}$. Réciproquement, si $x-x_0\equiv 0\mod \operatorname{ppcm}(224,119)$, alors $x\equiv x_0\equiv 3\mod 224$ et $x\equiv x_0=\equiv 17\mod 119$. L'ensemble des solutions est donc

$$\{x_0 + 224 \cdot 17 \cdot n : n \in \mathbb{Z}\} = \{17 \cdot (211 + 224n) : n \in \mathbb{Z}\} = \{3587 + 3808n : n \in \mathbb{Z}\}.$$

Question 3.

- 1. Déterminer les racines carrées de 15+8i sous forme algébrique.
- 2. Résoudre, pour $z \in \mathbb{C}$, l'équation $z^2 + (1-2i)z \frac{9}{2} 3i = 0$.

[Indication: $15^2 = 225$, $16^2 = 256$, $17^2 = 289$, $18^2 = 324$ et $19^2 = 361$.]

Solution

1. Soient $x, y \in \mathbb{R}$ avec $(x + iy)^2 = 15 + 8i$. Alors

$$x^{2} - y^{2} = 15,$$

 $2xy = 8,$ et
 $x^{2} + y^{2} = |x + iy|^{2} = |15 + 8i| = \sqrt{15^{2} + 8^{2}} = \sqrt{289} = 17.$

Ainsi $x^2 = \frac{1}{2}(15+17) = 16$ et $x = \pm 4$. Alors $y = \frac{8}{2x} = \pm 1$. Les racines carrées de 15+8i sont $\pm (4+i)$.

2. Le discriminant est $\Delta=(1-2i)^2-4\left(-\frac{9}{2}-3i\right)=-3-4i+18+12i=15+8i$. Si $\delta^2=\Delta$, les solutions de l'équation sont $z=\frac{1}{2}\left(-(1-2i)\pm\delta\right)$. On a donc les deux solutions

$$z_1 = \frac{-1+2i+4+i}{2} = \frac{3}{2} + \frac{3}{2}i$$
 et $z_2 = \frac{-1+2i-4-i}{2} = -\frac{5}{2} + \frac{i}{2}$.

Question 4. Montrer que pour tous couple de réels (α, β) on a

$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$
 et $\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$.

Solution On a

$$2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} + i 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} = 2\cos\frac{\alpha-\beta}{2}\left(\cos\frac{\alpha+\beta}{2} + i\sin\frac{\alpha+\beta}{2}\right)$$
$$= \left(e^{i\frac{\alpha-\beta}{2}} + e^{-i\frac{\alpha-\beta}{2}}\right)e^{i\frac{\alpha+\beta}{2}} = e^{i\alpha} + e^{i\beta}$$
$$= \left(\cos\alpha + i\sin\alpha\right) + \left(\cos\beta + i\sin\beta\right).$$

L'énoncé en découle en identifiant partie réelle et imaginaire.

Question 5. Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ l'application définie par $f(x,y) = (2x - y, \frac{1}{2}y - x)$.

- 1. Montrer que f est une application linéaire, et donner la matrice associée en base canonique.
- 2. Calculer le déterminant de f. L'application f, est-elle bijective?
- 3. Soit $I = \{f(\vec{v}) : \vec{v} \in \mathbb{R}^2\}$ l'image de f. Montrer que I est la droite vectorielle dirigée par $\vec{u}_1 = f(1,0)$.
- 4. Soit $K = \{\vec{v} \in \mathbb{R}^2 : f(\vec{v}) = 0\}$ le noyau de f. Montrer que K est une droite vectorielle et en donner un vecteur directeur \vec{u}_2 .
- 5. Montrer que \vec{u}_1 et \vec{u}_2 forment une base de \mathbb{R}^2 .
- 6. Calculer $f(\vec{u}_1)$ et $f(\vec{u}_2)$ en base canonique, puis en base (\vec{u}_1, \vec{u}_2) . En déduire la matrice de f en base (\vec{u}_1, \vec{u}_2) .

Solution.

1. Soient $(x, y), (x', y') \in \mathbb{R}^2$ et $\lambda \in \mathbb{R}$. Alors

$$f((x,y) + \lambda(x',y')) = f(x + \lambda x', y + \lambda y') = \left(2(x + \lambda x') - (y + \lambda y'), \frac{1}{2}(y + \lambda y') - (x + \lambda y')\right)$$
$$= (2x - y, \frac{1}{2}y - x) + \lambda (2x' - y', \frac{1}{2}y' - x') = f(x,y) + \lambda f(x',y').$$

Donc f est une application linéaire. Sa matrice en base canonique est

$$\left(f\left(\begin{array}{c}1\\0\end{array}\right),f\left(\begin{array}{c}0\\1\end{array}\right)\right)=\left(\begin{array}{cc}2&-1\\-1&\frac{1}{2}\end{array}\right).$$

2.

$$\det f = \begin{vmatrix} 2 & -1 \\ -1 & \frac{1}{2} \end{vmatrix} = 2\frac{1}{2} - (-1)(-1) = 0.$$

Donc f n'est pas bijective.

3. Soit $\vec{u}_1 = f(1,0) = (2,-1)$. Pour $(x,y) \in \mathbb{R}^2$ on a

$$f(x,y) = (2x - y, \frac{1}{2}y - x) = (x - \frac{1}{2}y)(2, -1) = (x - \frac{1}{2}y)\vec{u}_1.$$

Or, $x - \frac{1}{2}y \in \mathbb{R}$ et y prend toutes les valeurs (par exemple pour y = 0 quand x parcourt \mathbb{R}). Donc $I = \operatorname{im}(f) = \mathbb{R} \vec{u}_1$ est la droite vectorielle dirigée par \vec{u}_1 .

4. Pour $(x,y) \in \mathbb{R}^2$ on a $(x,y) \in \ker(f) = K$ si et seulement si

$$2x - y = 0$$
 et $\frac{1}{2}y - x = 0$.

Les deux conditions sont équivalentes à y = 2x, c'est-à-dire $(x, y) = x \vec{u}_2$ avec $\vec{u}_2 = (1, 2)$. Donc K est la droite vectorielle dirigée par $\vec{u}_2 = (1, 2)$.

5.

$$\det(\vec{u}_1, \vec{u}_2) = \begin{vmatrix} 2 & 1 \\ -1 & 2 \end{vmatrix} = 2 \cdot 2 - 1 \cdot (-1) = 5 \neq 0.$$

Donc \vec{u}_1 et \vec{u}_2 ne sont pas colinéaires et forment une base de \mathbb{R}^2 .

6. On a $f(\vec{u}_1) = f(2, -1) = (5, -\frac{5}{2}) = \frac{5}{2}\vec{u}_1$, et $f(\vec{u}_2) = (0, 0)$ comme $\vec{u}_2 \in K$. La matrice de f en base (\vec{u}_1, \vec{u}_2) est donc

$$\left(\begin{array}{cc} \frac{5}{2} & 0\\ 0 & 0 \end{array}\right).$$