Printemps 2011

Durée: 1 heure et 30 minutes

Problème - Devoir numéro 5

L'étudiant attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Il veillera à justifier soigneusement toutes ses réponses. Si un étudiant est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les exercices sont réputés indépendants et peuvent donc être traités dans n'importe quel ordre. À l'intérieur d'un exercice, lorsqu'un étudiant ne peut répondre à une question, il lui est vivement recommandé de poursuivre en admettant le résultat qu'il lui était demandé de démontrer

<u>de démontrer</u> On note (T_n) la suite de polynômes à coefficients réels définie par les initialisations $T_0=1$ et $T_1=X$ et la construction par récurrence, applicable pour tout $n\geq 0$:

$$(*) T_{n+2} = 2XT_{n+1} - T_n.$$

(Ces polynômes sont appelés les polynômes de Tchebycheff de première espèce).

Première partie

- 1) En utilisant la relation (*), montrer que pour tout $k \geq 0$, les polynômes T_k et T_{k+1} sont premiers entre eux.
- 2) a) Pour tout $n \geq 0$, calculer $T_n(0)$, $T_n(1)$ et $T_n(-1)$.
 - b) Montrer que pour tout n pair, $T_n(-X) = T_n(X)$ et que pour tout n impair, $T_n(-X) = -T_n(X)$.
 - c) Montrer que pour tout $n \geq 0$, le degré de T_n est égal à n, et déterminer le coefficient dominant de T_n .
 - d) Soit x fixé avec x > 1. En appliquant (*) à x et en utilisant les techniques concernant les suites définies par une relation de récurrence linéaire, fournir une expression explicite de $T_n(x)$, valable pour tout $n \ge 0$.
- 3) a) Montrer que pour tout $n \ge 0$ et tout α réel :

$$(**) T_n(\cos\alpha) = \cos(n\alpha).$$

- b) Soit $n \geq 0$ un entier fixé. Montrer que T_n est le seul polynôme de $\mathbf{R}[X]$ pour lequel l'identité (**) est vraie pour tout α réel.
- c) Montrer que pour tout k entier relatif,

$$T_n\left(\cos\left(\frac{\pi}{2n} + \frac{k\pi}{n}\right)\right) = 0.$$

d) Montrer que les racines de T_n sont les réels :

$$\cos\left(\frac{\pi}{2n} + \frac{k\pi}{n}\right), \qquad 0 \le k \le n - 1.$$

e) Déterminer toutes les racines de T'_n .

Deuxième partie

Soit Φ l'application de $\mathbf{R}[X]$ vers $\mathbf{R}[X]$ définie par :

pour tout polynôme
$$P$$
, $\Phi(P) = (X^2 - 1)P'' + XP'$.

On admettra sans en écrire la vérification que Φ est linéaire.

- 4) a) Pour tout $k \ge 1$, calculer $\Phi(X^k)$.
 - b) Montrer que si P est un polynôme de degré $d \ge 1$, le polynôme $\Phi(P)$ est également de degré d, puis déterminer $\operatorname{Ker} \Phi$.
- 5) Pour chaque λ réel, on note :

$$\Phi_{\lambda} = \Phi - \lambda Id_{\mathbf{R}[X]}.$$

- a) Soit λ un réel. On suppose qu'il existe un polynôme P non nul tel que $\Phi_{\lambda}(P) = 0$. Montrer que λ est égal au carré du degré de P.
- b) On suppose désormais que λ est le carré d'un entier et on note $\lambda=n^2$. Montrer que :

$$\Phi_{n^2}\left(\mathbf{R}_n[X]\right) \subset \mathbf{R}_{n-1}[X].$$

En déduire l'existence d'un polynôme P non nul dans $\mathbf{R}_n[X]$ tel que $\Phi_{n^2}(P) = 0$.

- c) Montrer que $\Phi_{n^2}(\mathbf{R}_{n-1}[X]) = \mathbf{R}_{n-1}[X].$
- d) En déduire la dimension du noyau de la restriction de Φ_{n^2} à $\mathbf{R}_n[X]$, puis la dimension du noyau de Φ_{n^2} .
- 6) En utilisant la relation (**), montrer que T_n est dans le noyau de Φ_{n^2} .

Troisième partie

7) Soit P un polynôme réel de degré $n \ge 1$. On suppose que le coefficient dominant de P est 2^{n-1} et que pour tout x de [-1,1], $P(x) \in [-1,1]$.

On note $Q = T_n - P$ et pour tout k entier, on note $x_k = \cos\left(\frac{k\pi}{n}\right)$.

- a) Calculer $T_n(x_k)$ pour $0 \le k \le n$.
- b) Pour chaque k avec $0 \le k \le n$, préciser le signe de $Q(x_k)$.
- c) En déduire que Q possède au moins n racines réelles comptées avec multiplicité (avertissement : cette question est significativement plus délicate, voire franchement difficile, mais des solutions inabouties mais intelligentes pourront être récompensées).
- d) Conclure que Q = 0.
- 8) Soit S un polynôme réel normalisé de degré n. Montrer que :

$$\sup_{-1 \le x \le 1} |S(x)| \ge \frac{1}{2^{n-1}}.$$

Pour quels S a-t-on égalité?