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Géométrie dans le plan 

 

 

 

Exercice 1.    

Montrer que l’ensemble des 𝑧 ∈ ℂ tels que soient alignés les points d’affixe 𝑧, 𝑖𝑧 et 𝑖 est un cercle de centre 

Ω (
1

2
,
1

2
) dont on donnera le rayon. 

Allez à : Correction exercice 1 : 

 

Exercice 2.  (hors programme) 

Soit 𝜆 ∈ ℝ et 𝐴, 𝐵 deux points du plan, déterminer l’ensemble des points 𝑀 tels que : 

𝐴𝑀⃗⃗⃗⃗ ⃗⃗  . 𝐵𝑀⃗⃗ ⃗⃗ ⃗⃗  = 𝜆 

Selon les valeurs de 𝜆. 

On pourra faire intervenir 𝐼 le milieu de [𝐴, 𝐵]. 

Allez à : Correction exercice 2 : 

 

Exercice 3.  

Soit ℎ une homothétie de rapport 𝑘 et ℎ′ une homothétie de rapport 𝑘′ et de centres respectifs Ω, 

d’affixe 𝜔, et Ω′, d’affixe 𝜔′. 

1. Soit 𝑡 une translation de vecteur 𝑢⃗ . Montrer que les composés ℎ ∘ 𝑡 et 𝑡 ∘ ℎ sont des homothéties 

de rapport 𝑘. 

2. Si 𝑘𝑘′ ≠ 1, montrer que ℎ ∘ ℎ′ est une homothétie de rapport 𝑘𝑘′ et que les centres de ℎ, ℎ′ et 

ℎ ∘ ℎ′ sont alignés. 

3. Si 𝑘𝑘′ = 1, montrer que ℎ ∘ ℎ′ est une translation. 

Allez à : Correction exercice 3 : 

 

Exercice 4.   

Soit 𝑧 ∈ ℂ. Soient 𝑀, d’affixe 𝑧, 𝑁, d’affixe 𝑖𝑧 et 𝑃 d’affixe 2𝑖. 

Montrer que si 𝑀,𝑁 et 𝑃 sont alignés l’ensemble des points d’affixe 𝑧 sont sur un cercle de 

centre Ω d’affixe 1 + 𝑖, et dont on précisera le rayon. 

Allez à : Correction exercice 4 : 

 

Exercice 5.   

On rappelle que  

𝑗 = 𝑒
2𝑖𝜋
3 ;    𝑗2 = 𝑗     et  que      𝑗3 = 1 

Soit 𝑟 une transformation du plan qui a un point 𝑀 associe le point 𝑀′ d’affixe 𝑀′ = 𝑟(𝑀) d’affixe 

𝑧′ = −𝑗2𝑧 + 1 + 𝑗2  

Soit 𝑠 une transformation du plan qui a un point 𝑀 d’affixe 𝑧 associe le point 𝑀′ = 𝑠(𝑀) d’affixe 

𝑧′ = −𝑗2𝑧 + 1 + 𝑗2  

1. Montrer que 𝑟 est une rotation du plan dont on donnera l’affixe du centre Ω et l’angle de la 

rotation. 

2. Montrer que Ω est un point fixe de 𝑠. 

3. Montrer que 𝑠 est une symétrie orthogonale. (on ne demande pas l’axe de la symétrie). 

4. Calculer l’affixe 𝑧′′ du point 𝑀′′ = 𝑟 ∘ 𝑠(𝑀), où 𝑀 est un point d’affixe 𝑧. Que peut-on en 

déduire de 𝑟 ∘ 𝑠 ? 
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Allez à : Correction exercice 5 : 

 

Exercice 6.    

Soit 𝑓 la transformation du plan complexe qui, à un point 𝑀 d’affixe 𝑧 associe le point d’affixe  

𝑧′ = (−1 + 𝑖√3)𝑧 − 𝑖√3 

1. Montrer que 𝑓 est une similitude directe, dont on donnera le rapport et le centre. 

2. Montrer que 𝑓 est la composée d’une homothétie de centre 𝑂 dont on donnera le rapport et d’une 

rotation, dont on donnera le centre et l’angle. 

Allez à : Correction exercice 6 : 

 

Exercice 7.   

Soit 𝑓 la transformation du plan complexe qui, à un point 𝑀 d’affixe 𝑧 associe le point d’affixe  

𝑧′ = −𝑖𝑧 + 1 + 𝑖 

Soit 𝑔 la transformation du plan complexe qui, à un point 𝑀 d’affixe 𝑧 associe le point d’affixe  

𝑧′ = 𝑖𝑧 − 1 + 𝑖 

1. Déterminer les points fixes de 𝑓 et les points fixes de 𝑔. 

On posera 𝑧 = 𝑥 + 𝑖𝑦 

2. Soit ℎ = 𝑓 ∘ 𝑔, quelle est cette transformation, que peut-on dire de son centre ? 

Allez à : Correction exercice 7 : 

 

Exercice 8.  

On note 𝐴 le point d’affixe 4 + 2𝑖 et 𝑂 le point d’affixe 0. 

Calculer les affixes des points 𝐵 tels que le triangle 𝑂𝐴𝐵 soit équilatéral. 

Allez à : Correction exercice 8 : 

 

Exercice 9.    

Soit 𝐴(1,1) et 𝐵(−1,2) de deux points du plan. 

Déterminer les points 𝑀 tels que le triangle 𝐴𝐵𝑀 soit équilatéral. 

Allez à : Correction exercice 9 : 

 

Exercice 10.  

 Soit 𝑓 la similitude directe définie par 𝑓(𝑧) = 𝑎𝑧 + 𝑏, où 𝑎, 𝑏 ∈ ℂ, avec 𝑎 = 𝜌𝑒𝑖𝜃 et 𝜌 ≠ 1. 

1. Montrer que 𝑓 admet un unique point fixe 𝜔. 

2. Donner l’image d’un complexe 𝑧 par la rotation 𝑟 de centre 𝜔 et d’angle 𝜃. 

3. Donner l’image d’un complexe 𝑧 par l’homothétie ℎ de centre 𝜔 et de rapport 𝜌. 

4. Donner l’image d’un complexe 𝑧 par 𝑟 ∘ ℎ en fonction de 𝑎, 𝑏 et 𝑧, que peut-on en conclure ? 

Allez à : Correction exercice 10 : 

 

Exercice 11.  

On rappelle l’identification canonique de ℝ2 et de ℂ par l’application affixe et sa réciproque : 

ℝ2 → ℂ
(𝑥, 𝑦) ↦ 𝑥 + 𝑖𝑦

     et     
ℂ → ℝ2

𝑧 ↦ (𝑅𝑒(𝑧), 𝐼𝑚(𝑧))
 

 

1. Rappeler l’effet sur ℂ des transformations du plan suivantes : 

a) Pour tout 𝑎 ∈ ℂ, la translation du vecteur d’affixe 𝑎. 

b) Pour tout (𝑎, 𝜆) ∈ ℂ × ℝ, l’homothétie de rapport 𝜆 et de centre d’affixe 𝑎. 
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c) Pour tout (𝑎, 𝜃) ∈ ℂ × ℝ, la rotation d’angle 𝜃 et de centre d’affixe 𝑎. 

d) Pour tout (𝑎, 𝜃) ∈ ℂ × ℝ, la symétrie par rapport à un axe formant un angle 𝜃 avec l’axe réel 

et passant par un point d’affixe 𝑎. 

2. Montrer que la composée de deux symétries est une translation ou une rotation. 

3. Montrer que la composée de deux rotations est une translation ou une rotation. 

Allez à : Correction exercice 11 : 

 

Exercice 12.  

Soient 𝑢⃗ = (−1,2), 𝑣 = (3, −4), 𝑤⃗⃗ = (−1,1),  

1. Déterminer 𝛼 et 𝛽 réels tels que 

𝑤⃗⃗ = 𝛼𝑢⃗ + 𝛽𝑣  

2. Soient 𝑡 = (𝑥, 𝑦), exprimer 𝑡  dans la base (𝑢⃗ , 𝑣 ), puis dans la base (𝑢⃗ , 𝑤⃗⃗ ). 

Allez à : Correction exercice 12 : 

 

Exercice 13.  

Soit 𝐷 la droite d’équation 𝑥 + 𝑦 = 0 et 𝐷′ la droite d’équation −2𝑦 = 0 , soit 𝑠 la symétrie, par rapport à 

𝐷 parallèlement à 𝐷′. 

1. Déterminer la matrice 𝑆, dans la base canonique de la symétrie 𝑠. 

2. Déterminer la matrice 𝑆′, dans la base (𝑒1⃗⃗  ⃗, 𝑒2⃗⃗  ⃗) où 𝑒1⃗⃗  ⃗ = (1,−1) et 𝑒2⃗⃗  ⃗ = (2,1), de cette symétrie. 

Allez à : Correction exercice 13 : 

 

Exercice 14.  

Soit 𝑟 la rotation d’angle 𝜃 et 𝑠 la symétrie orthogonale dont la matrice dans la base canonique est : 

𝑆 = (
cos(𝜃) sin(𝜃)

sin(𝜃) −cos(𝜃)
) 

1. Quelle est la matrice de 𝑟 ∘ 𝑠 dans la base canonique ? 

2. Déterminer l’ensemble des points invariants de 𝑟 ∘ 𝑠, quelle est cette application linéaire ? 

Allez à : Correction exercice 14 : 

 

Exercice 15.  

On appelle 𝛽 = (𝑒1⃗⃗  ⃗, 𝑒2⃗⃗  ⃗) la base canonique de ℝ2 

Soit 𝑝:ℝ2 → ℝ2  l’application linéaire définie par sa matrice dans la base canonique par 

𝑃 = (
−1 2
−1 2

) 

Soit 𝑠 l’application linéaire dont l’image d’un vecteur 𝑢⃗ = (𝑥, 𝑦) est : 

𝑠(𝑢⃗ ) = (
1

3
𝑥 +

2

3
𝑦,
4

3
𝑥 −

1

3
𝑦) 

 

1. Montrer que 𝑠 est une application linéaire. 

2. Donner un vecteur directeur de ker(𝑝) et un vecteur directeur de 𝐼𝑚(𝑝). 

3. Déterminer la matrice 𝑆 de 𝑠 dans la base canonique et montrer que 𝑠 est une symétrie. 

4. Montrer que 𝑝 est une projection. 

5. Déterminer un vecteur directeur de l’ensemble des vecteurs invariants de 𝑠 et un vecteur directeur de 

l’ensemble 𝐸 = {𝑢⃗ ∈ ℝ2, 𝑠(𝑢⃗ ) = −𝑢⃗ } 

6. Soit 𝑓 = 𝑝 ∘ 𝑠, déterminer la matrice 𝑀 de 𝑓 dans la base canonique. 

7. Montrer que 𝑓 est une projection. 
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8. Soit 𝑢1⃗⃗⃗⃗ = (1,1) et 𝑢2⃗⃗⃗⃗ = (4,7), montrer que 𝛽′ = (𝑢1⃗⃗⃗⃗ , 𝑢2⃗⃗⃗⃗ ) est une base de ℝ2 et déterminer la matrice de 

𝑓 dans la base 𝛽′. 

Allez à : Correction exercice 15 : 

 

Corrections 

 

 

Correction exercice 1 :  

Première méthode    

Soit 𝑀 le point d’affixe 𝑧, 𝑁 le point d’affixe 𝑖𝑧 et 𝐴 le point d’affixe 𝑖, ces trois points sont alignés si et 

seulement si det(𝐴𝑀⃗⃗⃗⃗ ⃗⃗  , 𝐴𝑁⃗⃗⃗⃗⃗⃗ ) = 0, ou, ce qui est équivalent à ce que 

𝐼𝑚 ((𝑧 − 𝑖)(𝑖𝑧 − 𝑖)) = 0 ⇔ (𝑧 − 𝑖)(𝑖𝑧 − 𝑖) ∈ ℝ ⇔ (𝑧 + 𝑖)(𝑖𝑧 − 𝑖) = (𝑧 − 𝑖)(−𝑖𝑧 + 𝑖) = 0

⇔ 𝑖|𝑧|2 − 𝑖𝑧 − 𝑧 + 1 = −𝑖|𝑧|2 + 𝑖𝑧 − 𝑧 + 1 ⇔ 2𝑖|𝑧|2 − 𝑖𝑧 − 𝑧 − 𝑖𝑧 + 𝑧 = 0

⇔ 2𝑖|𝑧|2 + (1 − 𝑖)𝑧 − (1 + 𝑖)𝑧 = 0 ⇔ |𝑧|2 +
1 − 𝑖

2𝑖
𝑧 −

1 + 𝑖

2𝑖
𝑧 = 0

⇔ |𝑧|2 +
−1 − 𝑖

2
𝑧 −

1 − 𝑖

2
𝑧 = 0 ⇔ |𝑧|2 =

1 + 𝑖

2
𝑧 +

1 − 𝑖

2
𝑧 

‖Ω𝑀⃗⃗ ⃗⃗ ⃗⃗  ‖
2
= |𝑧 −

1 + 𝑖

2
|
2

= (𝑧 −
1 + 𝑖

2
) (𝑧 −

1 − 𝑖

2
) = |𝑧|2 −

1 − 𝑖

2
𝑧 −

1 + 𝑖

2
𝑧 +

(1 + 𝑖)(1 − 𝑖)

4

=
1 + 𝑖

2
𝑧 +

1 − 𝑖

2
𝑧 −

1 − 𝑖

2
𝑧 −

1 + 𝑖

2
𝑧 +

(1 + 𝑖)(1 − 𝑖)

4
=
1 + 1

4
=
1

2
 

Donc l’ensemble des solutions est le cercle centre Ω (
1

2
,
1

2
) de rayon 

1

√2
. 

Deuxième méthode 

Soit 𝑀 le point d’affixe 𝑧, 𝑁 le point d’affixe 𝑖𝑧 et 𝐴 le point d’affixe 𝑖, ces trois points sont alignés si et 

seulement si 𝐴𝑀⃗⃗⃗⃗ ⃗⃗   et 𝐴𝑁⃗⃗⃗⃗⃗⃗  sont colinéaires, ce qui équivaut à ce qu’il existe 𝜆 ∈ ℝ tel que 

𝐴𝑀⃗⃗⃗⃗ ⃗⃗  = 𝜆𝐴𝑁⃗⃗⃗⃗⃗⃗ ⇔ 𝑧 − 𝑖 = 𝜆(𝑖𝑧 − 𝑖) ⇔ 𝑧 − 𝑖𝜆𝑧 = 𝑖 − 𝑖𝜆 ⇔ 𝑧 =
𝑖(1 − 𝜆)

1 − 𝑖𝜆
 

‖Ω𝑀⃗⃗ ⃗⃗ ⃗⃗  ‖ = |𝑧 −
1 + 𝑖

2
| = |

𝑖(1 − 𝜆)

1 − 𝜆𝑖
−
1 + 𝑖

2
| = |

2𝑖(1 − 𝜆) − (1 + 𝑖)(1 − 𝜆𝑖)

2(1 − 𝜆𝑖)
|

=
1

2
|
2𝑖(1 − 𝜆) − (1 − 𝜆𝑖 + 𝑖 + 𝜆)

1 − 𝜆𝑖
| =

1

2
|
−1 − 𝜆 + 𝑖(2 − 2𝜆 + 𝜆 − 1)

1 − 𝜆𝑖
|

=
1

2
|
−1 − 𝜆 + 𝑖(1 − 𝜆)

1 − 𝜆𝑖
| =

1

2

√(1 − 𝜆)2 + (1 + 𝜆)2

√1 + 𝜆2
=
1

2

√1 − 2𝜆 + 𝜆2 + 1 + 2𝜆 + 𝜆2

√1 + 𝜆2

=
1

2

√2 + 2𝜆2

√1 + 𝜆2
=
√2

2

√1 + 𝜆2

√1 + 𝜆2
=
1

√2
 

Et l’ensemble des points est le cercle de centre Ω (
1

2
,
1

2
) et de rayon 

1

√2
. 

Allez à : Exercice 1 

 

Correction exercice 2 :    

𝐴𝑀⃗⃗⃗⃗ ⃗⃗  . 𝐵𝑀⃗⃗ ⃗⃗ ⃗⃗  = 𝜆 ⇔ (𝐴𝐼⃗⃗⃗⃗ + 𝐼𝑀⃗⃗⃗⃗  ⃗). (𝐵𝐼⃗⃗⃗⃗ + 𝐼𝑀⃗⃗⃗⃗  ⃗) = 𝜆 ⇔ 𝐴𝐼⃗⃗⃗⃗ . 𝐵𝐼⃗⃗⃗⃗ + 𝐴𝐼⃗⃗⃗⃗ . 𝐼𝑀⃗⃗⃗⃗  ⃗ + 𝐼𝑀⃗⃗⃗⃗  ⃗. 𝐵𝐼⃗⃗⃗⃗ + 𝐼𝑀⃗⃗⃗⃗  ⃗. 𝐼𝑀⃗⃗⃗⃗  ⃗ = 𝜆 

Comme 𝐼 est le milieu de [𝐴, 𝐵], 𝐴𝐼⃗⃗⃗⃗ = −𝐵𝐼⃗⃗⃗⃗  

𝐴𝑀⃗⃗⃗⃗ ⃗⃗  . 𝐵𝑀⃗⃗ ⃗⃗ ⃗⃗  = 𝜆 ⇔ −𝐵𝐼⃗⃗⃗⃗ . 𝐵𝐼⃗⃗⃗⃗ − 𝐵𝐼⃗⃗⃗⃗ . 𝐼𝑀⃗⃗⃗⃗  ⃗ + 𝐼𝑀⃗⃗⃗⃗  ⃗. 𝐵𝐼⃗⃗⃗⃗ + ‖𝐼𝑀⃗⃗⃗⃗  ⃗‖
2
= 𝜆 ⇔ −‖𝐵𝐼⃗⃗⃗⃗ ‖

2
+ ‖𝐼𝑀⃗⃗⃗⃗  ⃗‖

2
= 𝜆 ⇔ ‖𝐼𝑀⃗⃗⃗⃗  ⃗‖

2

= 𝜆 + ‖𝐵𝐼⃗⃗⃗⃗ ‖
2
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Si 𝜆 > −‖𝐵𝐼⃗⃗⃗⃗ ‖
2
 alors l’ensemble des solutions est le cercle de centre 𝐼 et de rayon √𝜆 + ‖𝐵𝐼⃗⃗⃗⃗ ‖

2
 

Si 𝜆 = −‖𝐵𝐼⃗⃗⃗⃗ ‖
2
 alors l’ensemble des solutions est le point 𝐼. 

Si 𝜆 < −‖𝐵𝐼⃗⃗⃗⃗ ‖
2
 alors l’ensemble des solutions est l’ensemble vide. 

Allez à : Exercice 2 

 

Correction exercice 3 :  

1. Si 𝑡 est la translation de vecteur 𝑢⃗  et soit 𝑎 l’affixe du vecteur 𝑢⃗ . Soit 𝑀 un point d’affixe 𝑧, 

𝑀′ = 𝑡(𝑀) le point d’affixe 𝑧′ et 𝑀′′ = ℎ ∘ 𝑡(𝑀) le point d’affixe 𝑧′′, donc il existe 𝑘 ∈ ℝ ∖ {1} 

et 𝑏 ∈ ℂ tels que 𝑧′′ = 𝑘𝑧′ + 𝑏 

On a 

{
𝑀′ = 𝑡(𝑀)

ℎ ∘ 𝑡(𝑀) = ℎ(𝑡(𝑀))
⇔ { 𝑧

′ = 𝑧 + 𝑎
𝑧′′ = 𝑘𝑧′ + 𝑏

⇔ {
𝑧′ = 𝑧 + 𝑎

𝑧′′ = 𝑘(𝑧 + 𝑎) + 𝑏
⇔ { 𝑧′ = 𝑧 + 𝑎

𝑧′′ = 𝑘𝑧 + 𝑘𝑎 + 𝑏
 

On en déduit que ℎ ∘ 𝑡 est une homothétie de rapport 𝑘. 

Question non demandée : quel est son centre ? 

Pour cela on cherche son point fixe Ω1 d’affixe 𝜔1 

𝜔1 = 𝑘𝜔1 + 𝑘𝑎 + 𝑏 ⇔ 𝜔1(1 − 𝑘) = 𝑘𝑎 + 𝑏 ⇔ 𝜔1 =
𝑘𝑎 + 𝑏

1 − 𝑘
 

Si de plus on exprimer l’affixe de ce centre en fonction de l’affixe de Ω le centre de ℎ d’affixe  

𝜔. Le centre de ℎ est le point fixe de ℎ d’affixe 𝜔 =
𝑏

1−𝑘
 (voir cours ou refaire cette petite 

démonstration) donc 𝑏 = 𝜔(1 − 𝑘), ce que l’on remplace dans 

𝜔1 =
𝑘𝑎 + 𝑏

1 − 𝑘
=
𝑘𝑎 + 𝜔(1 − 𝑘)

1 − 𝑘
= 𝜔 +

𝑘𝑎

1 − 𝑘
 

 

Si 𝑡 est la translation de vecteur 𝑢⃗  et soit 𝑎 l’affixe du vecteur 𝑢⃗ . Soit 𝑀 un point d’affixe 𝑧, 

𝑀′ = ℎ(𝑀) le point d’affixe 𝑧′ et 𝑀′′ = 𝑡 ∘ ℎ(𝑀) le point d’affixe 𝑧′′, donc il existe         𝑘 ∈

ℝ ∖ {1} et 𝑏 ∈ ℂ tels que 𝑧′ = 𝑘𝑧 + 𝑏 

{
𝑀′ = ℎ(𝑀)

𝑡 ∘ ℎ(𝑀) = 𝑡(ℎ(𝑀))
⇔ {𝑧

′ = 𝑘𝑧 + 𝑏
𝑧′′ = 𝑧′ + 𝑎

⇔ { 𝑧′ = 𝑘𝑧 + 𝑏
𝑧′′ = 𝑘𝑧 + 𝑏 + 𝑎

 

On en déduit que 𝑡 ∘ ℎ est une homothétie de rapport 𝑘. 

Question non demandée : quel est son centre ? 

Pour cela on cherche le point fixe Ω2 d’affixe 𝜔2 

𝜔2 = 𝑘𝜔2 + 𝑎 + 𝑏 ⇔ 𝜔2 =
𝑎 + 𝑏

1 − 𝑘
 

Si de plus on exprimer l’affixe de ce centre en fonction de l’affixe de Ω le centre de ℎ d’affixe  

𝜔. Le centre de ℎ est le point fixe de ℎ d’affixe 𝜔 =
𝑏

1−𝑘
 (voir cours ou refaire cette petite 

démonstration) donc 𝑏 = 𝜔(1 − 𝑘), ce que l’on remplace dans 

𝜔2 =
𝑎 + 𝑏

1 − 𝑘
=
𝑎 + 𝜔(1 − 𝑘)

1 − 𝑘
= 𝜔 +

𝑎

1 − 𝑘
 

Allez à : Exercice 3 

2. Soit 𝑀 un point d’affixe 𝑧, 𝑀′ = ℎ′(𝑀) le point d’affixe 𝑧′ et 𝑀′′ = ℎ ∘ ℎ′(𝑀) le point d’affixe 

𝑧′′. 

Il existe 𝑘, 𝑘′ ∈ ℝ avec 𝑘𝑘′ ≠ 1 et 𝑏, 𝑏′ ∈ ℂ tels que 

{𝑧
′ = 𝑘′𝑧 + 𝑏′

𝑧′′ = 𝑘𝑧′ + 𝑏
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Donc 𝑧′′ = 𝑘(𝑘′𝑧 + 𝑏) + 𝑏′ = 𝑘𝑘′𝑧 + 𝑘𝑏 + 𝑏′ 

Ce qui montre que ℎ ∘ ℎ′ est une homothétie de rapport 𝑘𝑘′ car 𝑘𝑘′ ≠ 1. 

Le centre de ℎ a pour affixe 𝜔 et celui de ℎ′ a pour affixe 𝜔′ tels que 

{
𝜔 =

𝑏′

1 − 𝑘′

𝜔′ =
𝑏

1 − 𝑘

⇔ {
𝑏 = (1 − 𝑘′)𝜔′

𝑏′ = (1 − 𝑘)𝜔
 

On en déduit que  

𝑧′′ = 𝑘𝑘′𝑧 + 𝑘𝑏 + 𝑏′ = 𝑘𝑘′𝑧 + 𝑘(1 − 𝑘′)𝜔′ + (1 − 𝑘)𝜔 

Le centre de ℎ ∘ ℎ′ est le point fixe Ω′′ d’affixe 𝜔′′ 

𝜔′′ = 𝑘𝑘′𝜔′′ + 𝑘(1 − 𝑘′)𝜔′ + (1 − 𝑘)𝜔 ⇔ 𝜔′′ =
𝑘(1 − 𝑘′)𝜔′ + (1 − 𝑘)𝜔

1 − 𝑘𝑘′
 

𝜔′′ −𝜔 =
𝑘(1 − 𝑘′)𝜔′ + (1 − 𝑘)𝜔

1 − 𝑘𝑘′
−𝜔 =

𝑘(1 − 𝑘′)𝜔′ + (1 − 𝑘)𝜔 − (1 − 𝑘𝑘′)𝜔

1 − 𝑘𝑘′

=
𝑘(1 − 𝑘′)𝜔′ − 𝑘𝜔 + 𝑘𝑘′𝜔

1 − 𝑘𝑘′
=
𝑘𝜔′(1 − 𝑘′) − 𝑘𝜔(1 − 𝑘′)

1 − 𝑘𝑘′

=
𝑘(1 − 𝑘′)

1 − 𝑘𝑘′
(𝜔′ − 𝜔) 

Ce qui signifie que les vecteurs ΩΩ′′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =
𝑘(1−𝑘′)

1−𝑘𝑘′
ΩΩ′⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

Donc les trois centres sont alignés. 

Allez à : Exercice 3 

3. Soit 𝑀 un point d’affixe 𝑧, 𝑀′ = ℎ′(𝑀) le point d’affixe 𝑧′ et 𝑀′′ = ℎ ∘ ℎ′(𝑀) le point d’affixe 

𝑧′′. Il existe 𝑘, 𝑘′ ∈ ℝ avec 𝑘𝑘′ ≠ 1 et 𝑏, 𝑏′ ∈ ℂ tels que 

{𝑧
′ = 𝑘′𝑧 + 𝑏′

𝑧′′ = 𝑘𝑧′ + 𝑏
 

Donc 𝑧′′ = 𝑘(𝑘′𝑧 + 𝑏) + 𝑏′ = 𝑘𝑘′𝑧 + 𝑘𝑏 + 𝑏′ = 𝑧 + 𝑘𝑏 + 𝑏′ 

Ce qui montre que ℎ ∘ ℎ′ est une translation de vecteur 𝑢⃗  d’affixe 𝑘𝑏 + 𝑏′ 

On peut, si on veut exprimer l’affixe de ce vecteur en fonction de 𝜔 et de 𝜔′ les affixes des 

centres des deux homothéties. On a 

{
𝜔 =

𝑏′

1 − 𝑘′

𝜔′ =
𝑏

1 − 𝑘

⇔ {
𝑏 = (1 − 𝑘′)𝜔′

𝑏′ = (1 − 𝑘)𝜔
 

On en déduit que  

𝑧′′ = 𝑘𝑘′𝑧 + 𝑘𝑏 + 𝑏′ = 𝑧 + (𝑘 − 1)𝜔′ + (1 − 𝑘)𝜔 = 𝑧 + (1 − 𝑘)(𝜔 − 𝜔′) 

Allez à : Exercice 3 

 

Correction exercice 4 :    

𝑀,𝑁 et 𝑃 sont alignés si et seulement si 𝑃𝑀⃗⃗⃗⃗ ⃗⃗ = 𝜆𝑃𝑁⃗⃗⃗⃗⃗⃗  ce qui équivaut à 

𝑧 − 2𝑖 = 𝜆(𝑖𝑧 − 2𝑖) ⇔ 𝑧 − 𝑖𝜆𝑧 = 2𝑖 − 2𝑖𝜆 ⇔ 𝑧 = 2𝑖
1 − 𝜆

1 − 𝑖𝜆
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|𝑧 − (1 + 𝑖)| = |2𝑖
1 − 𝜆

1 − 𝑖𝜆
− (1 + 𝑖)| = |

2𝑖(1 − 𝜆) − (1 − 𝑖𝜆)(1 + 𝑖)

1 − 𝑖𝜆
|

= |
2𝑖(1 − 𝜆) − (1 + 𝑖 − 𝑖𝜆 + 𝜆)

1 − 𝑖𝜆
| = |

−(1 + 𝜆) + 𝑖(2 − 2𝜆 + 𝜆 − 1)

1 − 𝑖𝜆
|

= |
−(1 + 𝜆) + 𝑖(1 − 𝜆)

1 − 𝑖𝜆
| =

√(1 + 𝜆)2 + (1 − 𝜆)2

√1 + 𝜆2

=
√1 + 2𝜆 + 𝜆2 + 1 − 2𝜆 + 𝜆2

√1 + 𝜆2
=
√2 + 2𝜆2

√1 + 𝜆2
= √2 

Les points 𝑀 sont sur le cercle de centre Ω d’affixe 1 + 𝑖 et de rayon √2. 

Allez à : Exercice 4 

 

Correction exercice 5 :    

1.  −𝑗2 = 𝑒𝑖𝜋𝑒
4𝑖𝜋

3 = 𝑒
7𝑖𝜋

3 = 𝑒
𝑖𝜋

3  donc 𝑟 est une rotation d’angle 
𝜋

3
, son point fixe vérifie 𝑟(Ω) = Ω 

donc 𝜔 = −𝑗2𝜔 + 1 + 𝑗2, ce qui entraine que : 

𝜔 =
1 + 𝑗2

1 + 𝑗2
= 1 

2.  L’affixe de 𝑠(Ω) est  

−𝑗2 × 1 + 1 + 𝑗2 = −𝑗2 + 1 + 𝑗2 = 1 

Ce qui montre que  

𝑠(Ω) = Ω 

Autrement dit Ω est un point fixe de 𝑠. 

3. L’affixe de l’image par 𝑠 d’un point 𝑀 est de la forme 𝑎𝑧 + 𝑏, de plus 

𝑎𝑏 + 𝑏 = −𝑗2 (1 + 𝑗2) + 1 + 𝑗2 = −𝑗2(1 + 𝑗) + 1 + 𝑗2 = −𝑗2 − 𝑗3 + 1 + 𝑗2 = 0 

Donc 𝑠 est une symétrie orthogonale. 

4. Soit 𝑀′ = 𝑠(𝑀) d’affixe 𝑧′ = −𝑗2𝑧 + 1 + 𝑗2. Soit 𝑀′′ = 𝑟(𝑀′) = 𝑟 ∘ 𝑠(𝑀) d’affixe 𝑧′′ =

−𝑗2𝑧′ + 1 + 𝑗2, on a  

𝑧′′ = −𝑗2𝑧′ + 1 + 𝑗2 = −𝑗2(−𝑗2𝑧 + 1 + 𝑗2) + 1 + 𝑗2 = 𝑗4𝑧 − 𝑗2 − 𝑗4 + 1 + 𝑗2 = 𝑗𝑧 + 1 − 𝑗 

C’est de la forme 𝑎𝑧 + 𝑏, il reste à vérifier que 𝑎𝑏 + 𝑏 = 0 pour montrer qu’il s’agit d’une 

symétrie orthogonale. 

𝑎𝑏 + 𝑏 = 𝑗(1 − 𝑗) + 1 − 𝑗 = 𝑗(1 − 𝑗2) + 1 − 𝑗 = 𝑗 − 𝑗3 + 1 − 𝑗 = 0 

𝑟 ∘ 𝑠 est une symétrie orthogonale. 

Allez à : Exercice 5 

 

Correction exercice 6 :    

1. 𝑧′ est de la forme 𝑎𝑧 + 𝑏 donc 𝑓 est une similitude directe. 

|−1 + 𝑖√3| = √(−1)2 + 3 = 2 est le rapport de la similitude 

Son centre d’affixe 𝑎 vérifie 

𝑎 = (−1 + 𝑖√3)𝑎 − 𝑖√3 ⇔ (2 − 𝑖 √3)𝑎 = −𝑖√3 ⇔ 𝑎 =
−𝑖√3

2 − 𝑖√3
=
(−𝑖√3)(2 + 𝑖√3)

4 + 3
=
3

7
−
2𝑖√3

7
 

 

2. |−1 + 𝑖√3| = √(−1)2 + 3 = 2 
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𝑧′ = 2((−
1

2
+ 𝑖

√3

2
) 𝑧 − 𝑖  

√3

2
) = 2(𝑒

2𝑖𝜋
3 𝑧 − 𝑖  

√3

2
) 

On appelle ℎ l’homothétie de centre 𝑂 rapport est 2, à un point 𝑀 d’affixe 𝑧 elle associe le point 𝑀′ 

d’affixe 𝑧′ = 2𝑧 

On appelle 𝑟 la rotation d’angle 
2𝜋

3
 (car 

2𝜋

3
 est un argument du complexe de module 1 : 𝑒

2𝑖𝜋

3 ), à un point 

𝑀 d’affixe 𝑧 elle associe le point d’affixe 𝑀′ d’affixe 𝑧′ = 𝑒
2𝑖𝜋

3 𝑧 − 𝑖  
√3

2
 

𝑀′′ = ℎ(𝑟(𝑀))   et  𝑀′ = 𝑟(𝑀) 

Equivaut à  

{

𝑧′′ = 2𝑧′

𝑧′ = 𝑒
2𝑖𝜋
3 𝑧 − 𝑖  

√3

2

 

Donc  

𝑧′′ = 2(𝑒
2𝑖𝜋
3 𝑧 − 𝑖  

√3

2
) = (−1 + 𝑖√3)𝑧 − 𝑖√3 

On a bien 𝑓 = ℎ ∘ 𝑟. Il reste à trouver le centre de la rotation, c’est-à-dire son point fixe Ω d’affixe 𝜔 

qui vérifie 

𝜔 = (−
1

2
+ 𝑖

√3

2
)𝜔 − 𝑖  

√3

2
⇔ (1 +

1

2
− 𝑖

√3

2
)𝜔 = −𝑖

√3

2
⇔ 𝜔 =

−𝑖√3

3
2 − 𝑖

√3
2

=

−𝑖√3 (
3
2 + 𝑖

√3
2 )

9
4 +

3
4

=
−
3
2 +

3𝑖√3
2

3
= −

1

2
+ 𝑖

√3

2
= 𝑗 

Allez à : Exercice 6 

   

Correction exercice 7 :    

1. On cherche les points d’affixe 𝑧 = 𝑥 + 𝑖𝑦 tels que 𝑓(𝑀) = 𝑀, ce qui équivaut à  

𝑧 = −𝑖𝑧 + 1 + 𝑖 ⇔ 𝑥 + 𝑖𝑦 = −𝑖(𝑥 − 𝑖𝑦) + 1 + 𝑖 = 1 − 𝑦 + 𝑖(1 − 𝑥) ⇔ {
𝑥 = 1 − 𝑦
𝑦 = 1 − 𝑥

⇔ 𝑥 + 𝑦 = 1 

Il s’agit d’une droite. 

On cherche les points d’affixe 𝑧 = 𝑥 + 𝑖𝑦 tels que 𝑔(𝑀) = 𝑀, ce qui équivaut à  

𝑧 = 𝑖𝑧 − 1 + 𝑖 ⇔ 𝑥 + 𝑖𝑦 = 𝑖(𝑥 − 𝑖𝑦) − 1 + 𝑖 = −1 + 𝑦 + 𝑖(1 + 𝑥) ⇔ {
𝑥 = −1 + 𝑦
𝑦 = 1 + 𝑥

⇔ 𝑦 = 1 + 𝑥 

Il s’agit d’une droite. 

2. On pose 𝑀′′ = 𝑓(𝑔(𝑀)) et 𝑀′ = 𝑓(𝑀) donc 

{𝑧
′′ = −𝑖𝑧′ + 1 + 𝑖
𝑧′ = 𝑖𝑧 − 1 + 𝑖

 

Par conséquent 

𝑧′′ = −𝑖(𝑖𝑧 − 1 + 𝑖) + 1 + 𝑖 = −𝑖(−𝑖𝑧 − 1 − 𝑖) + 1 + 𝑖 = −𝑧 + 𝑖 − 1 + 1 + 𝑖 = −𝑧 + 2𝑖 

ℎ est à la fois une homothétie de rapport −1 et une rotation d’angle 𝜋, l’affixe de son centre vérifie 

𝑧 = −𝑧 + 2𝑖 ⇔ 𝑧 = 𝑖 

On peut remarquer que c’est l’intersection des deux droites invariante de 𝑓 et 𝑔. 

Allez à : Exercice 7    

 

Correction exercice 8 :  
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D’après le dessin il y a deux solutions 

Première méthode (Mauvaise) 

On appelle 𝐼 le point d’affixe 2 + 𝑖, c’est le milieu de [𝑂, 𝐴] 

Les solutions sont sur la perpendiculaire à (𝑂𝐴), un point 𝑀 (𝑥, 𝑦) de cette droite vérifie 

𝐼𝑀⃗⃗⃗⃗  ⃗. 𝑂𝐴⃗⃗ ⃗⃗  ⃗ = 0 ⇔ (𝑥 − 2) × 4 + (𝑦 − 1) × 2 = 0 ⇔ 4𝑥 + 2𝑦 − 10 = 0 ⇔ 2𝑥 + 𝑦 − 5 = 0 

Pour que le triangle 𝑂𝐴𝐵 soit équilatéral, on doit rajouter la condition ‖𝑂𝐵⃗⃗ ⃗⃗  ⃗‖ = ‖𝑂𝐴⃗⃗⃗⃗  ⃗‖ = ‖𝐴𝐵⃗⃗⃗⃗  ⃗‖ 

‖𝑂𝐴⃗⃗⃗⃗  ⃗‖ = √42 + 22 = √20 = 2√5 

‖𝑂𝐵⃗⃗ ⃗⃗  ⃗‖ = √𝑥2 + 𝑦2 

Si ces deux distances sont égales la troisième ‖𝐴𝐵⃗⃗⃗⃗  ⃗‖ sera égale au deux premières. 

Donc  

𝑥2 + 𝑦2 = 20 

Il s’agit donc de trouver les points 𝐵 vérifiant : 

{
2𝑥 + 𝑦 − 5 = 0

𝑥2 + 𝑦2 = 20
 

D’après la première équation, 𝑦 = −2𝑥 + 5, ce que l’on remplace dans la seconde. 

𝑥2 + (−2𝑥 + 5)2 = 20 ⇔ 𝑥2 + 4𝑥2 − 20𝑥 + 25 = 20 ⇔ 5𝑥2 − 20𝑥 + 5 = 0 ⇔ 𝑥2 − 4𝑥 + 1

= 0 

Les racines de cette équation sont 

𝑥1 =
4 + 2√3

2
= 2 + √3      et      𝑥2 = 2 − √3 

On en déduit les ordonnées des points 𝐵 solutions 

𝑦1 = −2(2 + √3) + 5 = 1 − 2√3        et       𝑦2 = −2(2 − √3) + 5 = 1 + 2√3 

Donc les deux solutions sont 

𝐵1  (2 + √3, 1 − 2√3)      et    𝐵2  (2 − √3, 1 + 2√3) 

Deuxième solution (La bonne) 

Soit 𝜃 = (𝑂𝐴⃗⃗⃗⃗  ⃗, 𝑂𝐵⃗⃗ ⃗⃗  ⃗)̂ = ±
𝜋

3
+ 2𝑘𝜋,   𝑘 ∈ ℤ 

Par conséquent l’affixe 𝑧 de 𝐵 vérifie 

𝑧 = 𝑒𝑖𝜃(4 + 2𝑖) 

Autrement dit  𝑂𝐵⃗⃗ ⃗⃗  ⃗ = 𝑅𝜃(0𝐴⃗⃗⃗⃗  ⃗), où 𝑅𝜃 est la rotation de centre 𝑂 et d’angle 𝜃. 

Si 𝜃 =
𝜋

3
+ 2𝑘𝜋,   𝑘 ∈ ℤ alors 

𝐴(4,2) 

× 

𝑂(0,0) 

× 

× 

𝐶(4,0) 

𝐼(2,1) 

× 

𝐵1 

× 𝐵2 

 × 
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𝑧 = (
1

2
+ 𝑖

√3

2
) (4 + 2𝑖) = 2 + 𝑖 + 2𝑖√3 − √3 = 2 − √3 + 𝑖(1 + 2√3) 

Si 𝜃 = −
𝜋

3
+ 2𝑘𝜋,   𝑘 ∈ ℤ alors 

𝑧 = (
1

2
− 𝑖

√3

2
) (4 + 2𝑖) = 2 + 𝑖 − 2𝑖√3 + √3 = 2 + √3 + 𝑖(1 − 2√3) 

Donc les deux solutions sont 

𝐵1  (2 + √3, 1 − 2√3)      et    𝐵2  (2 − √3, 1 + 2√3) 

Allez à : Exercice 8 

 

Correction exercice 9 :    

Soit 𝑀 est l’image de 𝐵 par la rotation d’angle 
𝜋

3
 et de centre 𝐴, soit 𝑀 est l’image de 𝐵 par la rotation 

d’angle −
𝜋

3
 et de centre 𝐴. 

On pose 𝑎 = 1 + 𝑖 l’affixe de 𝐴, 𝐵 = −1 + 2𝑖, l’affixe de 𝐵 et 𝑀(𝑥, 𝑦) d’affixe 𝑧 = 𝑥 + 𝑖𝑦 

Dans le premier cas 

𝑧 − 𝑎 = 𝑒
𝑖𝜋
3 (𝑏 − 𝑎) ⇔ 𝑧 = (

1

2
+ 𝑖

√3

2
) (−1 + 2𝑖 − (1 + 𝑖)) + 1 + 𝑖 = (

1

2
+ 𝑖

√3

2
) (−2 + 𝑖) + 1 + 𝑖

= −1 −
√3

2
+ 𝑖 (−√3 +

1

2
) + 1 + 𝑖 = −

√3

2
+ 𝑖 (

3

2
− √3) 

La première solution est 𝑀1 (−
√3

2
,
3

2
− √3) 

Dans le second cas 

𝑧 − 𝑎 = 𝑒−
𝑖𝜋
3 (𝑏 − 𝑎) ⇔ 𝑧 = (

1

2
− 𝑖

√3

2
) (−1 + 2𝑖 − (1 + 𝑖)) + 1 + 𝑖 = (

1

2
− 𝑖

√3

2
) (−2 + 𝑖) + 1 + 𝑖

= −1 +
√3

2
+ 𝑖 (√3 +

1

2
) + 1 + 𝑖 =

√3

2
+ 𝑖 (

3

2
+ √3) 

La seconde solution est 𝑀2 (
√3

2
,
3

2
+ √3) 

Allez à : Exercice 9 

   

Correction exercice 10 :    

1.  soit 𝜔 un éventuel point fixe 

 𝜔 = 𝑎𝜔 + 𝑏 ⇔ 𝜔(1 − 𝑎) = 𝑏 ⇔ 𝜔 =
𝑏

1−𝑎
 

Car 𝑎 ≠ 1 vu que |𝑎| ≠ 1. 

Donc 𝑓 admet un unique point fixe. 

2.   

𝑟(𝑧) − 𝜔 = 𝑒𝑖𝜃(𝑧 − 𝜔) ⇔ 𝑟(𝑧) = 𝑒𝑖𝜃𝑧 + 𝜔(1 − 𝑒(𝑖𝜃)) 

3.   

ℎ(𝑧) − 𝜔 = 𝜌(𝑧 − 𝜔) ⇔ ℎ(𝑧) = 𝑒𝑖𝜃𝑧 + 𝜔(1 − 𝜌) 

4.   

𝑟(𝑧) = 𝑒𝑖𝜃𝑧 + 𝜔(1 − 𝑒(𝑖𝜃)) 

ℎ(𝑧) = 𝜌𝑧 + 𝜔(1 − 𝜌) = 𝑧′ 



   Pascal Lainé 
 

𝑟 ∘ ℎ(𝑧) = 𝑟(ℎ(𝑧)) = 𝑟(𝑧′) = 𝑒𝑖𝜃𝑧′ + 𝜔(1 − 𝑒(𝑖𝜃)) = 𝑒𝑖𝜃(𝜌𝑧 + 𝜔(1 − 𝜌)) + 𝜔(1 − 𝑒𝑖𝜃)

= 𝜌𝑒𝑖𝜃𝑧 + 𝜔𝑒𝑖𝜃 −𝜔𝜌𝑒𝑖𝜃 +𝜔 −𝜔𝑒𝑖𝜃 = 𝜌𝑒𝑖𝜃𝑧 − 𝜔𝜌𝑒𝑖𝜃 +𝜔 = 𝑎𝑧 − 𝑎𝜔 + 𝜔

= 𝑎𝑧 + 𝜔(1 − 𝑎) = 𝑎𝑧 +
𝑏

1 − 𝑎
(1 − 𝑎) = 𝑎𝑧 + 𝑏 = 𝑓(𝑧) 

Donc toute similitude directe de centre 𝜔 est la composée d’une rotation de centre 𝜔 et d’une 

homothétie de centre 𝜔. 

Il est important de montrer que le « 𝑎 » et le « 𝑏 » sont ceux de 𝑓. 

Allez à : Exercice 10 

   

Correction exercice 11 :  

1.  

a)  Soit 𝑀′ (𝑥′, 𝑦′) l’image de 𝑀 (𝑥, 𝑦) par 𝑡𝑢⃗⃗  la translation de vecteur  𝑢⃗  dont les coordonnés 

sont (𝑎1, 𝑎2) avec 𝑎 = 𝑎1 + 𝑖𝑎2. 

On a : 

𝑀𝑀′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑢⃗ ⇔ {
𝑥′ − 𝑥 = 𝑎1
𝑦′ − 𝑦 = 𝑎2

⇔ {
𝑥′ = 𝑥 + 𝑎1
𝑦′ = 𝑦 + 𝑎2

 

Ce qui montre qu’à un point 𝑀 d’affixe 𝑧 la translation de vecteur 𝑢⃗ = (𝑎1, 𝑎2) on associe le 

point 𝑀′ d’affixe 𝑧 + 𝑎. 

Allez à : Exercice 11 

b) Soit 𝑀′ (𝑥′, 𝑦′) l’image de 𝑀 (𝑥, 𝑦) par l’homothétie de centre Ω (𝑎1, 𝑎2) (avec 𝑎 = 𝑎1 +

𝑖𝑎2) et de rapport 𝜆, on a : 

Ω𝑀′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝜆Ω𝑀⃗⃗ ⃗⃗ ⃗⃗  ⇔ {
𝑥′ − 𝑎1 = 𝜆(𝑥 − 𝑎1)

𝑦′ − 𝑎2 = 𝜆(𝑦 − 𝑎2)
⇔ {

𝑥′ = 𝑎1 + 𝜆(𝑥 − 𝑎1)

𝑦′ = 𝑎2 + 𝜆(𝑦 − 𝑎2)
⇔ {

𝑥′ = 𝑎1(1 − 𝜆) + 𝜆𝑥

𝑦′ = 𝑎2(1 − 𝜆) + 𝜆𝑦
 

Ce qui montre qu’à un point d’affixe 𝑀 d’affixe 𝑧 l’homothétie de centre Ω (𝑎1, 𝑎2) (avec 

𝑎 = 𝑎1 + 𝑖𝑎2) et de rapport 𝜆 on associe le point 𝑀′ d’affixe 𝜆𝑧 + (1 − 𝜆)𝑎. 

Allez à : Exercice 11 

c) Soit 𝑀′ (𝑥′, 𝑦′) l’image de 𝑀 (𝑥, 𝑦) par la rotation de centre Ω le point d’affixe 𝑎 = 𝑎1 +

𝑖𝑎2, donc l’angle entre les vecteurs Ω𝑀⃗⃗⃗⃗ ⃗⃗   et Ω𝑀′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   est 𝜃. 

Ω𝑀⃗⃗ ⃗⃗ ⃗⃗  = (𝑥 − 𝑎1, 𝑦 − 𝑎2)         et       Ω𝑀′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = (𝑥′ − 𝑎1, 𝑦
′ − 𝑎2) 

Au vecteur Ω𝑀⃗⃗⃗⃗ ⃗⃗   on associe le complexe 𝑧 − 𝑎 (avec 𝑧 = 𝑥 + 𝑖𝑦) et au vecteur Ω𝑀′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   on 

associe le vecteur 𝑧′ − 𝑎 (avec 𝑧′ = 𝑥′ + 𝑖𝑦′). L’angle entre Ω𝑀⃗⃗⃗⃗ ⃗⃗   et Ω𝑀′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   est 𝜃 donc 

𝑧′ − 𝑎 = 𝑒𝑖𝜃(𝑧 − 𝑎) 

Autrement dit l’image de 𝑀 (𝑥, 𝑦) par la rotation de centre Ω le point d’affixe 𝑎 est le 

point 𝑀′ d’affixe 

𝑧′ = 𝑎 + 𝑒𝑖𝜃(𝑧 − 𝑎) 

 

Au vecteur Ω𝑀⃗⃗⃗⃗ ⃗⃗   on associe le complexe 𝑧 − 𝑎 (avec 𝑧 = 𝑥 + 𝑖𝑦) et au vecteur Ω𝑀′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   on 

associe le vecteur 𝑧′ − 𝑎 (avec 𝑧′ = 𝑥′ + 𝑖𝑦′). L’angle entre Ω𝑀⃗⃗⃗⃗ ⃗⃗   et Ω𝑀′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   est 𝜃 donc 

𝑧′ − 𝑎 = 𝑒𝑖𝜃(𝑧 − 𝑎) 

Autrement dit l’image de 𝑀 (𝑥, 𝑦) par la rotation de centre Ω le point d’affixe 𝑎 est le 

point 𝑀′ d’affixe 

𝑧′ = 𝑎 + 𝑒𝑖𝜃(𝑧 − 𝑎) 

Allez à : Exercice 11 

d)  
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Un vecteur directeur de la droite passant par 𝐴 faisant un angle 𝜃 avec l’axe des abscisses 

est   𝑢(𝜃)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = (cos(𝜃) , sin(𝜃)) et donc d’affixe cos(𝜃) + 𝑖 sin(𝜃) = 𝑒𝑖𝜃. 

Le point 𝐼, milieu de [𝑀,𝑀′] a pour affixe 
𝑧+𝑧′

2
, 𝐴 est le point d’affixe 𝑎. 

𝑀′ est le symétrique de 𝑀 par la symétrie par rapport à la droite passant par 𝐴 faisant un 

angle 𝜃 avec l’axe des abscisses si et seulement si 𝑀𝑀′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ est orthogonal à 𝑢(𝜃)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ et si 𝐼𝐴⃗⃗⃗⃗  est 

colinéaire à 𝑢(𝜃)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, autrement dit si et seulement si 𝑀𝑀′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. 𝐼𝐴⃗⃗⃗⃗ = 0 et si det ( 𝐼𝐴⃗⃗⃗⃗ , 𝑢(𝜃)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) = 0  

Nous allons utiliser les complexes, rappelons que si 𝑢⃗  a pour affixe 𝑎 et 𝑣  a pour affixe 𝑏 

alors : 

𝑅𝑒(𝑎𝑏) = 𝑢⃗ . 𝑣       et      𝐼𝑚(𝑎𝑏) = det(𝑢⃗ , 𝑣 ) 

{
𝑀𝑀′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. 𝑢(𝜃)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 0

det ( 𝐼𝐴⃗⃗⃗⃗ , 𝑢(𝜃)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) = 0
⇔ {

𝑅𝑒 ((𝑧′ − 𝑧)𝑒𝑖𝜃) = 0

𝐼𝑚((𝑎 −
𝑧 + 𝑧′

2
) 𝑒𝑖𝜃) = 0

⇔ {

(𝑧′ − 𝑧)𝑒𝑖𝜃 ∈ 𝑖ℝ

(𝑎 −
𝑧 + 𝑧′

2
) 𝑒𝑖𝜃 ∈ ℝ

 

⇔ {

(𝑧′ − 𝑧)𝑒𝑖𝜃 = −(𝑧′ − 𝑧)𝑒𝑖𝜃

(𝑎 −
𝑧 + 𝑧′

2
) 𝑒𝑖𝜃 = (𝑎 −

𝑧 + 𝑧′

2
) 𝑒𝑖𝜃

⇔ {
(𝑧′ − 𝑧)𝑒𝑖𝜃 = −(𝑧′ − 𝑧)𝑒−𝑖𝜃

(2𝑎 − 𝑧 − 𝑧′)𝑒𝑖𝜃 = (2𝑎 − 𝑧 − 𝑧′)𝑒−𝑖𝜃

⇔
𝐿1
𝐿2
{

(𝑧′ − 𝑧)𝑒2𝑖𝜃 = −𝑧′ + 𝑧

(2𝑎 − 𝑧 − 𝑧′)𝑒2𝑖𝜃 = 2𝑎 − 𝑧 − 𝑧′
 

Le but est de trouver 𝑧′ en fonction du reste, il suffit de calculer 𝐿1 + 𝐿2 

(2𝑎 − 2𝑧)𝑒2𝑖𝜃 = 2𝑎 − 2𝑧′ 

Ce qui donne 

𝑧′ = 𝑎 − (𝑎 − 𝑧)𝑒2𝑖𝜃 

Si 𝑀′ est le symétrique de 𝑀, d’affixe 𝑧, par la symétrie par rapport à la droite passant 

par 𝐴 faisant un angle 𝜃 avec l’axe des abscisses, alors 𝑀′ est le point d’affixe 

𝑧′ = 𝑎 − (𝑎 − 𝑧)𝑒2𝑖𝜃 

Allez à : Exercice 11 

× 

𝜃 

𝐴(𝑎) × 

𝑀(𝑧) 

𝑀′(𝑧′) 

× 

× 

𝐼 (
𝑧 + 𝑧′

2
) 



   Pascal Lainé 
 

2. Si  on appelle 𝑠: ℂ → ℂ l’application qui à 𝑧, l’affixe d’un point 𝑀, associe 𝑧′ = 𝑠(𝑧), d’affixe 𝑀′ le 

symétrique de 𝑀 par la symétrie par rapport à la droite passant par 𝐴, d’affixe 𝑎 et faisant un angle 𝜃 

avec l’axe des abscisses, on a 

𝑧′ = 𝑠(𝑧) = 𝑎 − (𝑎 − 𝑧)𝑒2𝑖𝜃 

Si  on appelle 𝑠′: ℂ → ℂ l’application qui à 𝑧′, l’affixe d’un point 𝑀′, associe 𝑧′′ = 𝑠(𝑧), d’affixe 

𝑀′′ le symétrique de 𝑀′ par la symétrie par rapport à la droite passant par 𝐴′, d’affixe 𝑎′ et faisant 

un angle 𝜃 avec l’axe des abscisses, on a 

𝑠′(𝑧′) = 𝑎′ − (𝑎′ − 𝑧′)𝑒2𝑖𝜃
′
 

L’image d’un point 𝑀 par composée de la symétrie par rapport à la droite passant par 𝐴, d’affixe 𝑎, 

et faisant un angle 𝜃 par rapport à l’axe des abscisses et la symétrie par rapport à la droite passant 

par 𝐴′, d’affixe 𝑎′, et faisant un angle 𝜃′ avec l’axe des abscisses est le point 𝑀′′, d’affixe 𝑧′′ qui 

vérifie 

𝑧′′ = 𝑠′ ∘ 𝑠(𝑧) = 𝑠′(𝑧′) = 𝑎′ − (𝑎′ − 𝑧′)𝑒2𝑖𝜃
′
= 𝑎′ − (𝑎′ − 𝑎 − (𝑎 − 𝑧)𝑒2𝑖𝜃) 𝑒2𝑖𝜃

′

= 𝑎′ − (𝑎′ − 𝑎 + (𝑎 − 𝑧)𝑒−2𝑖𝜃)𝑒2𝑖𝜃
′
= 𝑎′ − (𝑎′ − 𝑎)𝑒2𝑖𝜃

′
− (𝑎 − 𝑧)𝑒2𝑖(𝜃

′−𝜃) 

Si 𝜃′ = 𝜃[𝜋] ⇔ 𝜃′ = 𝜃 + 𝑘𝜋, 𝑘 ∈ ℤ (ce qui est équivalent à dire que 2(𝜃′ − 𝜃) = 2𝑘𝜋, 𝑘 ∈ ℤ) alors 

𝑧′′ = 𝑎′ − (𝑎′ − 𝑎)𝑒2𝑖𝜃 − (𝑎 − 𝑧) = 𝑧 + 𝑎′ − 𝑎 − (𝑎′ − 𝑎)𝑒2𝑖𝜃 

Ce qui montre que 𝑠′ ∘ 𝑠(𝑧) est l’affixe d’un point 𝑀′′ tel que 

𝑀𝑀′′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑢⃗  

𝑎′ − 𝑎 − (𝑎′ − 𝑎)𝑒2𝑖𝜃 étant l’affixe du vecteur 𝑢⃗ . 

Si 𝜃 ≠ 𝜃′ [𝜋] ⇔ 𝜃 − 𝜃′ ≠ 𝑘𝜋, 𝑘 ∈ ℤ, alors  

𝑧′′ = 𝑎′ − (𝑎′ − 𝑎)𝑒2𝑖𝜃
′
+ (𝑧 − 𝑎)𝑒2𝑖(𝜃

′−𝜃) = 𝑎′ − (𝑎′ − 𝑎)𝑒2𝑖𝜃
′
− 𝑎𝑒2𝑖(𝜃

′−𝜃) + 𝑧𝑒2𝑖(𝜃
′−𝜃) 

Pour pouvoir affirmer qu’il s’agit de l’affixe d’un point 𝑀′′ qui soit l’image d’un point 𝑀 par une 

rotation de centre 𝑏 et d’angle 𝛼 , il faut montrer que  

𝑧′′ = 𝑏 + (𝑧 − 𝑏)𝑒𝑖𝛼 = 𝑏(1 − 𝑒𝑖𝛼) + 𝑧𝑒𝑖𝛼 

Il suffit de poser 

{
𝑏(1 − 𝑒𝑖𝛼) = 𝑎′ − (𝑎′ − 𝑎)𝑒2𝑖𝜃

′
− 𝑎𝑒2𝑖(𝜃

′−𝜃)

𝑒𝑖𝛼 = 𝑒2𝑖(𝜃
′−𝜃)                            

⇔ {
𝑏(1 − 𝑒2𝑖(𝜃

′−𝜃)) = 𝑎′ − (𝑎′ − 𝑎)𝑒2𝑖𝜃
′
− 𝑎𝑒2𝑖(𝜃

′−𝜃)

𝑒𝑖𝛼 = 𝑒2𝑖(𝜃
′−𝜃)                 

⇔ {𝑏 =
𝑎′ − (𝑎′ − 𝑎)𝑒2𝑖𝜃

′
− 𝑎𝑒2𝑖(𝜃

′−𝜃)

1 − 𝑒2𝑖(𝜃
′−𝜃)

𝛼 = 2(𝜃′ − 𝜃) + 2𝑘𝜋, 𝑘 ∈ ℤ               

 

Cela montre que, dans ce cas, la composée de deux symétries est bien une rotation. 

Certes l’expression de 𝑏, l’affixe du centre, est assez obscure mais nous allons voir que ce point est 

bien celui que vous avez vu au lycée. 

Pour introduire un peu de symétrie dans l’expression de 𝑏, on va multiplier le numérateur et le 

dénominateur par 𝑒2𝑖𝜃 

𝑏 =
𝑒2𝑖𝜃(𝑎′ − (𝑎′ − 𝑎)𝑒2𝑖𝜃

′
− 𝑎𝑒2𝑖(𝜃

′−𝜃))

𝑒2𝑖𝜃(1 − 𝑒2𝑖(𝜃
′−𝜃))

=
𝑎′𝑒2𝑖𝜃 − (𝑎′ − 𝑎)𝑒2𝑖(𝜃+𝜃

′) − 𝑎𝑒2𝑖𝜃
′

𝑒2𝑖𝜃 − 𝑒2𝑖𝜃
′  

Remarque : (non  demandée par l’énoncé) 

Déterminons le point d’intersection des droites 𝐷𝜃, droite passant par le point 𝐴, d’affixe 𝑎 et faisant 

en angle 𝜃 avec l’axe des abscisse et la droite 𝐷𝜃′ (droite passant par le point 𝐴′, d’affixe 𝑎′) et 

faisant en angle 𝜃′ avec l’axe des abscisse. Soit 𝐵 ∈ 𝐷𝜃 ∩ 𝐷𝜃′ 
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𝐵 ∈ 𝐷𝜃 ∩ 𝐷𝜃′ ⇔ ∃𝜆 ∈ ℝ, ∃𝜆′ ∈ ℝ,

{
𝐴𝐵⃗⃗⃗⃗  ⃗ = 𝜆𝑢(𝜃)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐴′𝐵⃗⃗⃗⃗⃗⃗  ⃗ = 𝜆′𝑢(𝜃′)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
⇔ {𝑏 − 𝑎 = 𝜆𝑒

𝑖𝜃    

𝑏 − 𝑎′ = 𝜆′𝑒𝑖𝜃
′
 
⇔ {

𝑏 = 𝑎 + 𝜆𝑒𝑖𝜃    

𝑏 = 𝑎′ + 𝜆′𝑒𝑖𝜃
′
 

⇔ {
𝑏 = 𝑎 + 𝜆𝑒𝑖𝜃    

𝑎 + 𝜆𝑒𝑖𝜃 = 𝑎′ + 𝜆′𝑒𝑖𝜃
′
 
 

Le but est de trouver 𝜆 (ou 𝜆′) afin de trouver 𝐵. Seulement voilà, il n’y a qu’une équation et deux 

inconnue (𝑎 + 𝜆𝑒𝑖𝜃 = 𝑎′ + 𝜆′𝑒𝑖𝜃
′
). Mais il s’agit d’une inconnue complexe, cette équation est en 

fait deux équations l’équation de l’égalité des parties réelles et l’égalité des parties imaginaires. Il y 

a un moyen de trouver 𝜆 (où 𝜆′) avec une petite astuce, considérons le conjugué de cette équation 

𝑎 + 𝜆𝑒𝑖𝜃 = 𝑎′ + 𝜆′𝑒𝑖𝜃
′
⇔ 𝑎 + 𝜆𝑒−𝑖𝜃 = 𝑎′ + 𝜆′𝑒−𝑖𝜃

′
 car 𝜆 et 𝜆′ sont réels. Par conséquent 𝜆 et 𝜆′ 

vérifient 

{ 𝑎 + 𝜆𝑒
𝑖𝜃 = 𝑎′ + 𝜆′𝑒𝑖𝜃

′

𝑎 + 𝜆𝑒−𝑖𝜃 = 𝑎′ + 𝜆′𝑒−𝑖𝜃
′ ⇔ { 𝜆𝑒

𝑖𝜃 − 𝜆′𝑒𝑖𝜃
′
= 𝑎′ − 𝑎

𝜆𝑒−𝑖𝜃 − 𝜆′𝑒−𝑖𝜃
′
= 𝑎′ − 𝑎

 

Appliquons le bon vieux théorème de Cramer (à condition que cela marche) 

| 𝑒
𝑖𝜃 −𝑒𝑖𝜃

′

𝑒−𝑖𝜃 −𝑒−𝑖𝜃
′ 
| = −𝑒𝑖(𝜃−𝜃

′) + 𝑒−𝑖(𝜃−𝜃
′) = −(𝑒𝑖(𝜃−𝜃

′) − 𝑒−𝑖(𝜃−𝜃
′)) = −2𝑖(sin(𝜃 − 𝜃′)) ≠ 0 

Car 𝜃 − 𝜃′ ≠ 𝑘𝜋, 𝑘 ∈ ℤ 

On peut y aller avec le théorème de Cramer (qui marche même avec des complexes) 

{
 
 
 
 

 
 
 
 

𝜆 =

|𝑎
′ − 𝑎 −𝑒𝑖𝜃

′

𝑎′ − 𝑎 −𝑒−𝑖𝜃
′ 
|

| 𝑒
𝑖𝜃 −𝑒𝑖𝜃

′

𝑒−𝑖𝜃 −𝑒−𝑖𝜃
′ 
|
=
−𝑒−𝑖𝜃

′ (𝑎′ − 𝑎) + 𝑒𝑖𝜃
′ (𝑎′ − 𝑎)

−𝑒𝑖(𝜃−𝜃
′) + 𝑒−𝑖(𝜃−𝜃

′)

𝜆′ =

| −𝑒
𝑖𝜃′ 𝑎′ − 𝑎

−𝑒−𝑖𝜃
′ 𝑎′ − 𝑎

|

| 𝑒
𝑖𝜃 −𝑒𝑖𝜃

′

𝑒−𝑖𝜃 −𝑒−𝑖𝜃
′ 
|
=
−(𝑎′ − 𝑎)𝑒𝑖𝜃

′
+ (𝑎′ − 𝑎)𝑒−𝑖𝜃

′ 

−𝑒𝑖(𝜃−𝜃
′) + 𝑒−𝑖(𝜃−𝜃

′)

 

Par conséquent 

L’affixe de 𝐵 est 

𝑏 = 𝑎 +
−𝑒−𝑖𝜃

′ (𝑎′ − 𝑎) + 𝑒𝑖𝜃
′ (𝑎′ − 𝑎)

−𝑒𝑖(𝜃−𝜃
′) + 𝑒−𝑖(𝜃−𝜃

′)
𝑒𝑖𝜃

=
𝑎(−𝑒𝑖(𝜃−𝜃

′) + 𝑒−𝑖(𝜃−𝜃
′)) + (−𝑒−𝑖𝜃

′ (𝑎′ − 𝑎) + 𝑒𝑖𝜃
′ (𝑎′ − 𝑎)) 𝑒𝑖𝜃

−𝑒𝑖(𝜃−𝜃
′) + 𝑒−𝑖(𝜃−𝜃

′)

=
−𝑎𝑒𝑖(𝜃−𝜃

′) + 𝑎𝑒−𝑖(𝜃−𝜃
′) − 𝑒𝑖(𝜃

′−𝜃) (𝑎′ − 𝑎) + 𝑒𝑖(𝜃+𝜃
′) (𝑎′ − 𝑎)

−𝑒𝑖(𝜃−𝜃
′) + 𝑒−𝑖(𝜃−𝜃

′)

=
𝑎𝑒𝑖(𝜃−𝜃

′) − 𝑎𝑒𝑖(𝜃
′−𝜃) − 𝑎′𝑒𝑖(𝜃

′−𝜃) + 𝑎𝑒𝑖(𝜃
′−𝜃) − 𝑎′𝑒𝑖(𝜃−𝜃

′) + 𝑎𝑒𝑖(𝜃−𝜃
′) 

−𝑒𝑖(𝜃−𝜃
′) + 𝑒−𝑖(𝜃−𝜃

′)

=
𝑎𝑒𝑖(𝜃−𝜃

′) − 𝑎′𝑒𝑖(𝜃
′−𝜃) − 𝑎′𝑒𝑖(𝜃−𝜃

′) + 𝑎𝑒𝑖(𝜃−𝜃
′) 

−𝑒𝑖(𝜃−𝜃
′) + 𝑒−𝑖(𝜃−𝜃

′)

=
𝑎𝑒𝑖(𝜃−𝜃

′) − 𝑎′𝑒𝑖(𝜃
′−𝜃) − 𝑎′𝑒𝑖(𝜃−𝜃

′) + 𝑎𝑒𝑖(𝜃−𝜃
′) 

−𝑒𝑖(𝜃−𝜃
′) + 𝑒−𝑖(𝜃−𝜃

′)
×
𝑒𝑖(𝜃+𝜃

′)

𝑒𝑖(𝜃+𝜃
′)

=
−𝑎𝑒2𝑖𝜃

′
+ (𝑎′ − 𝑎)𝑒2𝑖(𝜃+𝜃

′) + 𝑎′𝑒2𝑖𝜃

−𝑒2𝑖𝜃 + 𝑒2𝑖𝜃
′ =

𝑎′𝑒2𝑖𝜃 − (𝑎′ − 𝑎)𝑒2𝑖(𝜃+𝜃
′) − 𝑎𝑒2𝑖𝜃

′

𝑒2𝑖𝜃 − 𝑒2𝑖𝜃
′  

C’est justement le centre de la rotation. 

Allez à : Exercice 11 
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3. On a vu que l’image de 𝑀 d’affixe 𝑧 par la rotation 𝑟 de centre Ω le point d’affixe 𝑎 et d’angle 𝜃 est 

le point 𝑀′ d’affixe 𝑧′ = 𝑎 + 𝑒𝑖𝜃(𝑧 − 𝑎) 

Donc l’image de 𝑀′, d’affixe 𝑧′ par la rotation 𝑟′ de centre Ω′ le point d’affixe 𝑎′ et d’angle 𝜃′ est le 

point 𝑀′′ d’affixe 𝑧′′ = 𝑎′ + 𝑒𝑖𝜃
′
(𝑧′ − 𝑎′) 

Donc l’image d’un point 𝑀, d’affixe 𝑧 par 𝑟′ ∘ 𝑟 est le point 𝑀′′ d’affixe  

𝑧′′ = 𝑎′ + 𝑒𝑖𝜃
′
(𝑧′ − 𝑎′) = 𝑎′ + 𝑒𝑖𝜃

′
(𝑎 + 𝑒𝑖𝜃(𝑧 − 𝑎) − 𝑎′) = 𝑎′ + (𝑎 − 𝑎′)𝑒𝑖𝜃

′
+ 𝑒𝑖(𝜃+𝜃

′)(𝑧 − 𝑎) 

Si 𝜃 + 𝜃′ = 0 [2𝜋] alors  

𝑧′′ = 𝑎′ + (𝑎 − 𝑎′)𝑒𝑖𝜃
′
+ 𝑧 − 𝑎 = 𝑧 + (𝑎 − 𝑎′)(𝑒𝑖𝜃

′
− 1) 

Et alors 𝑟′ ∘ 𝑟 la translation de vecteur 𝑢⃗  d’affixe (𝑎 − 𝑎′)(𝑒𝑖𝜃
′
− 1) 

Si 𝜃 + 𝜃′ ≠ 0 [2𝜋] alors 

𝑧′′ = 𝑎′ + (𝑎 − 𝑎′)𝑒𝑖𝜃
′
+ 𝑒𝑖(𝜃+𝜃

′)(𝑧 − 𝑎) = 𝑎′ + (𝑎 − 𝑎′)𝑒𝑖𝜃
′
− 𝑎𝑒𝑖(𝜃+𝜃

′) + 𝑧𝑒𝑖(𝜃+𝜃
′) 

Pour pouvoir affirmer qu’il s’agit de l’affixe d’un point 𝑀′′ qui soit l’image d’un point 𝑀 par une 

rotation de centre 𝑏 et d’angle 𝛼 , il faut montrer que  

𝑧′′ = 𝑏 + (𝑧 − 𝑏)𝑒𝑖𝛼 = 𝑏(1 − 𝑒𝑖𝛼) + 𝑧𝑒𝑖𝛼 

Il suffit de poser 

{
𝑏(1 − 𝑒𝑖𝛼) = 𝑎′ + (𝑎 − 𝑎′)𝑒𝑖𝜃

′
− 𝑎𝑒𝑖(𝜃+𝜃

′)

𝑒𝑖𝛼 = 𝑒𝑖(𝜃+𝜃
′)                            

⇔ {
𝑏(1 − 𝑒𝑖(𝜃+𝜃

′)) = 𝑎′ + (𝑎 − 𝑎′)𝑒𝑖𝜃
′
− 𝑎𝑒𝑖(𝜃+𝜃

′)

𝑒𝑖𝛼 = 𝑒𝑖(𝜃+𝜃
′)                 

⇔ {𝑏 =
𝑎′ + (𝑎 − 𝑎′)𝑒𝑖𝜃

′
− 𝑎𝑒𝑖(𝜃+𝜃

′)

1 − 𝑒𝑖(𝜃+𝜃
′)

𝛼 = 𝜃 + 𝜃′ + 2𝑘𝜋, 𝑘 ∈ ℤ               

 

Cela montre que, dans ce cas, la composée de deux rotations est bien une rotation d’angle 𝜃 + 𝜃′. 

Question non demandée : où est le centre ? 

Certes, il s’agit du point 𝐵 d’affixe 𝑏, mais encore. 

Transformons un peu 𝑏 

𝑏 =
𝑎′ + (𝑎 − 𝑎′)𝑒𝑖𝜃

′
− 𝑎𝑒𝑖(𝜃+𝜃

′)

1 − 𝑒𝑖(𝜃+𝜃
′)

=
𝑎′ + (𝑎 − 𝑎′)𝑒𝑖𝜃

′
− 𝑎𝑒𝑖(𝜃+𝜃

′)

𝑒𝑖
𝜃+𝜃′

2 (𝑒−𝑖
𝜃+𝜃′

2 − 𝑒𝑖
𝜃+𝜃′

2 )

=
𝑎′𝑒−𝑖

𝜃+𝜃′

2 + (𝑎 − 𝑎′)𝑒𝑖
𝜃−𝜃′

2 − 𝑎𝑒𝑖
𝜃+𝜃′

2

𝑒−𝑖
𝜃+𝜃′

2 − 𝑒𝑖
𝜃+𝜃′

2  

 

Ainsi, l’expression 

Donc  



   Pascal Lainé 
 

𝑏 − 𝑎 =
𝑎′𝑒−𝑖

𝜃+𝜃′

2 + (𝑎 − 𝑎′)𝑒𝑖
𝜃−𝜃′

2 − 𝑎𝑒𝑖
𝜃+𝜃′

2

𝑒−𝑖
𝜃+𝜃′

2 − 𝑒𝑖
𝜃+𝜃′

2  

− 𝑎

=

𝑎′𝑒−𝑖
𝜃+𝜃′

2 + 𝑎𝑒𝑖
𝜃−𝜃′

2 − 𝑎′𝑒𝑖
𝜃−𝜃′

2 − 𝑎𝑒𝑖
𝜃+𝜃′

2 − 𝑎 (𝑒−𝑖
𝜃+𝜃′

2 − 𝑒𝑖
𝜃+𝜃′

2 )

𝑒−𝑖
𝜃+𝜃′

2 − 𝑒𝑖
𝜃+𝜃′

2  

=
𝑎𝑒𝑖

𝜃−𝜃′

2 − 𝑎′𝑒
𝑖
𝜃−𝜃′

2 − 𝑎𝑒𝑖
𝜃+𝜃′

2 + 𝑎𝑒𝑖
𝜃+𝜃′

2

𝑒−𝑖
𝜃+𝜃′

2 − 𝑒𝑖
𝜃+𝜃′

2  

=
(𝑎 − 𝑎′)𝑒𝑖

𝜃−𝜃′

2 − (𝑎 − 𝑎′)𝑒𝑖
𝜃+𝜃′

2

𝑒−𝑖
𝜃+𝜃′

2 − 𝑒𝑖
𝜃+𝜃′

2  

=

(𝑎 − 𝑎′) (𝑒𝑖
𝜃−𝜃′

2 − 𝑒𝑖
𝜃+𝜃′

2 )

𝑒−𝑖
𝜃+𝜃′

2 − 𝑒𝑖
𝜃+𝜃′

2  

= (𝑎 − 𝑎′)𝑒𝑖
𝜃
2

𝑒−𝑖
𝜃′

2 − 𝑒𝑖
𝜃′

2

𝑒−𝑖
𝜃+𝜃′

2 − 𝑒𝑖
𝜃+𝜃′

2

= (𝑎 − 𝑎′)𝑒𝑖
𝜃
2

−2𝑖 sin (
𝜃′

2
)

−2𝑖 sin (
𝜃 + 𝜃′

2 )
= 𝑒𝑖

𝜃
2(𝑎 − 𝑎′)

sin (
𝜃′

2
)

sin (
𝜃 + 𝜃′

2 )
 

Ce qui montre que les droites vecteurs Ω𝐵⃗⃗ ⃗⃗  ⃗ et Ω′Ω⃗⃗⃗⃗ ⃗⃗  ⃗ font un angle 
𝜃

2
 car 

sin(
𝜃′

2
)

sin(
𝜃+𝜃′

2
)
∈ ℝ+. 

De même (ou presque) en changeant les rôles de 𝑎 et 𝑎′ ainsi que ceux de 𝜃 et 𝜃′. 

𝑏 − 𝑎′ = 𝑒𝑖
𝜃′

2 (𝑎′ − 𝑎)
sin (

𝜃
2)

sin (
𝜃 + 𝜃′

2 )
 

Ce qui montre que les droites vecteurs Ω′𝐵⃗⃗⃗⃗ ⃗⃗  ⃗ et ΩΩ′⃗⃗ ⃗⃗ ⃗⃗  ⃗ font un angle 
𝜃′

2
 car 

sin(
𝜃

2
)

sin(
𝜃+𝜃′

2
)
∈ ℝ+. 

Cela permet de placer le point. 

Allez à : Exercice 11 

 

Correction exercice 12 :  

1.  

𝑤⃗⃗ = 𝛼𝑢⃗ + 𝛽𝑣 ⇔ 𝛼(−1,2) + 𝛽(3,−4) = (−1,1) ⇔ {
−𝛼 + 3𝛽 = −1
2𝛼 − 4𝛽 = 1

 

|
−1 3
2 −4

| = 4 − 6 = −2 ≠ 0 

Il s’agit donc d’un système de Cramer 

𝛼 =
|−1 3
1 −4

|

|
−1 3
2 −4

|
= −

1

2
 

 

𝛽 =
|−1 −1
2 1

|

|
−1 3
2 −4

|
= −

1

2
 

𝑤⃗⃗ = −
1

2
𝑢⃗ −

1

2
𝑣 ⇔ 𝑣 = −𝑢⃗ − 2𝑤⃗⃗  

2. On cherche 𝛼 et 𝛽 réels tels que 

𝑡 = 𝛼𝑢⃗ + 𝛽𝑣 ⇔ 𝛼(−1,2) + 𝛽(3, −4) = (𝑥, 𝑦) ⇔ {
−𝛼 + 3𝛽 = 𝑥
2𝛼 − 4𝛽 = 𝑦
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|
−1 3
2 −4

| = 4 − 6 = −2 ≠ 0 

 

Il s’agit donc d’un système de Cramer 

𝛼 =
|
𝑥 3
𝑦 −4

|

|
−1 3
2 −4

|
=
−4𝑥 − 3𝑦

−2
= 2𝑥 +

3

2
𝑦 

𝛽 =
|
−1 𝑥
2 𝑦

|

|
−1 3
2 −4

|
=
−𝑦 − 2𝑥

−2
= 𝑥 +

1

2
𝑦 

𝑡 = (2𝑥 +
3

2
𝑦) 𝑢⃗ + (𝑥 +

1

2
𝑦) 𝑣  

D’après 1, 𝑣 = −𝑢⃗ − 2𝑤⃗⃗ , donc 

𝑡 = (2𝑥 +
3

2
𝑦) 𝑢⃗ − (𝑥 +

1

2
𝑦) (𝑢⃗ + 2𝑤⃗⃗ ) = (𝑥 + 𝑦)𝑢⃗ − (2𝑥 + 𝑦)𝑤⃗⃗  

Allez à : Exercice 12 

 

Correction exercice 13 :  

1. Un vecteur directeur de 𝐷 est 𝑢⃗ = (1,−1) = 𝑖 − 𝑗  , et un vecteur directeur de 𝐷′ est 𝑣 = (2,1) = 2𝑖 + 𝑗  

On a 𝑠(𝑢⃗ ) = 𝑢⃗  et 𝑠(𝑣 ) = 𝑣   ce qui équivaut à  

{
𝑠(𝑖 − 𝑗 ) = 𝑖 − 𝑗 

𝑠(2𝑖 + 𝑗 ) = −(2𝑖 + 𝑗 ) = −2𝑖 − 𝑗 
⇔
𝐿1
𝐿2
{
𝑠(𝑖 ) − 𝑠(𝑗 ) = 𝑖 − 𝑗 

2𝑠(𝑖 ) + 𝑠(𝑗 ) = −2𝑖 − 𝑗 
 

𝐿2 + 𝐿1 donne 3𝑠(𝑖 ) = −𝑖 − 2𝑗  et 2𝐿1 − 𝐿2 donne −3𝑠(𝑗 ) = −4𝑖 − 𝑗  

Ce qui donne  

{
𝑠(𝑖 ) = −

1

3
𝑖 −

2

3
𝑗 

𝑠(𝑗 ) = −
4

3
𝑖 +

1

3
𝑗 

 

Donc  

𝑆 = mat(𝑖 ,𝑗 )(𝑠) = (
−
1

3
−
4

3

−
2

3

1

3

) =
1

3
(
−1 −4
−2 1

) 

2. 𝑒1⃗⃗  ⃗ est un vecteur directeur de 𝐷 donc 𝑠(𝑒1⃗⃗  ⃗) = 𝑒1⃗⃗  ⃗ et 𝑒2⃗⃗  ⃗ est un vecteur directeur de 𝐷′ donc 𝑠(𝑒2⃗⃗  ⃗) = −𝑒2⃗⃗  ⃗ 

Par conséquent 

𝑆′ = mat(𝑒1⃗⃗⃗⃗ ,𝑒2⃗⃗⃗⃗ )(𝑠) = (
1 0
0 −1

) 

Allez à : Exercice 13 

 

Correction exercice 14 :  

1.  

(
cos(𝜃) − sin(𝜃)

sin(𝜃) cos(𝜃)
) (
cos(𝜃) sin(𝜃)

sin(𝜃) − cos(𝜃)
) = (

cos2(𝜃) − sin2(𝜃) 2 sin(𝜃) cos(𝜃)

2 sin(𝜃) cos(𝜃) − sin2(𝜃) + cos2(𝜃)
)

= (
cos(2𝜃) sin(2𝜃)

sin(2𝜃) − cos(2𝜃)
) 

Donc 𝑟 ∘ 𝑠 est une symétrie orthogonale. 

2.  Soit 𝑢⃗ = (𝑥, 𝑦) un point invariant de 𝑟 ∘ 𝑠 
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(
cos(2𝜃) sin(2𝜃)

sin(2𝜃) − cos(2𝜃)
) (
𝑥
𝑦) = (

𝑥
𝑦) ⇔ {

cos(2𝜃) 𝑥 + sin(2𝜃) 𝑦 = 𝑥

sin(2𝜃) 𝑥 − cos(2𝜃)𝑦 = 𝑦

⇔ {
(cos(2𝜃) − 1)𝑥 + sin(2𝜃) 𝑦 = 0

sin(2𝜃) 𝑥 − (cos(2𝜃) + 1)𝑦 = 0
⇔ {

−2 sin2(𝜃) 𝑥 + 2 sin(𝜃) cos(𝜃) 𝑦 = 0

2 sin(𝜃) cos(𝜃) 𝑥 − 2 cos2(𝜃) 𝑦 = 0

⇔ {
− sin2(𝜃) 𝑥 + sin(𝜃) cos(𝜃)𝑦 = 0

sin(𝜃) cos(𝜃) 𝑥 − cos2(𝜃) 𝑦 = 0
 

Le déterminant de ce système est nul, donc ces deux équations sont proportionnelles, soit sin(𝜃) ≠ 0 

soit cos(𝜃) ≠ 0, donc on peut simplifier l’une ou l’autre des équations, finalement l’ensemble des 

points invariants est 

sin(𝜃) 𝑥 − cos(𝜃)𝑦 = 0 

Et 𝑟 ∘ 𝑠 est la symétrie orthogonale par rapport à cette droite. 

Allez à : Exercice 14 

 

Correction exercice 15 :  

1. Pour tout 𝜆 ∈ ℝ, pour tout 𝜆′ ∈ ℝ, pour tout 𝑢⃗ = (𝑥, 𝑦) ∈ ℝ2 et pour tout 𝑢′⃗⃗  ⃗ = (𝑥′, 𝑦′) ∈ ℝ2  

𝑠(𝜆𝑢⃗ + 𝜆′𝑢′⃗⃗  ⃗) = 𝑠(𝜆𝑥 + 𝜆′𝑥′, 𝜆𝑦 + 𝜆′𝑦′)

= (
2

3
(𝜆𝑥 + 𝜆′𝑥′) +

1

3
(𝜆𝑦 + 𝜆′𝑦′),

4

3
(𝜆𝑥 + 𝜆′𝑥′) −

1

3
(𝜆𝑦 + 𝜆′𝑦′))

= (𝜆 (
2

3
𝑥 +

1

3
𝑦) + 𝜆′ (

2

3
𝑥′ +

1

3
𝑦′) , 𝜆 (

4

3
𝑥 −

1

3
𝑦) + 𝜆′ (

4

3
𝑥′ −

1

3
𝑦′))

= 𝜆 (
2

3
𝑥 +

1

3
𝑦,
4

3
𝑥 −

1

3
𝑦) + 𝜆′ (

2

3
𝑥′ +

1

3
𝑦′,
4

3
𝑥′ −

1

3
𝑦′) = 𝜆𝑠(𝑥, 𝑦)  + 𝜆′𝑠(𝑥′, 𝑦′)

= 𝜆𝑠(𝑢⃗ ) + 𝜆𝑠(𝑢′⃗⃗  ⃗) 

Donc 𝑠 est linéaire. 

2.   

𝑢⃗ ∈ ker(𝑝) ⇔ 𝑝(𝑢⃗ ) = 0⃗ ⇔ 𝑃𝑋 = 𝑂 = (
−1 2
−1 2

) (
𝑥
𝑦) = (

0
0
) ⇔ −𝑥 + 2𝑦 = 0 ⇔ 𝑥 = 2𝑦 

Donc 𝑢⃗ = (2𝑦, 𝑦) = (2,1) 

Un vecteur directeur de ker(𝑝) est (2,1) = 2 𝑒1⃗⃗ ⃗⃗  + 𝑒2⃗⃗  ⃗ 

Soit 𝑣 ∈ 𝐼𝑚(𝑝), il existe 𝑢⃗ = (𝑥, 𝑦) tel que 

𝑣 = 𝑝(𝑢⃗ ) = (−𝑥 + 2𝑦,−𝑥 + 2𝑦) = (−𝑥 + 2𝑦)(1,1) = (𝑥 + 𝑦)(𝑒1⃗⃗  ⃗  + 𝑒2⃗⃗  ⃗) 

Un vecteur directeur de 𝐼𝑚(𝑝) est (1,1) = 𝑒1⃗⃗  ⃗  + 𝑒2⃗⃗  ⃗ 

3.   

𝑠(𝑒1⃗⃗  ⃗) = 𝑠(1,0) = (
1

3
,
4

3
)    et    𝑠(𝑒2⃗⃗  ⃗) = 𝑠(0,1) = (

2

3
,−
1

3
) 

Donc la matrice 𝑆 est 

𝑆 = (

1

3

2

3
4

3
−
1

3

)

𝑠(𝑒1⃗⃗⃗⃗ ) 𝑠(𝑒2⃗⃗⃗⃗ )

𝑒1⃗⃗  ⃗

𝑒2⃗⃗  ⃗
=
1

3
(
1 2
4 −1

) 

𝑆2 =
1

3
(
1 2
4 −1

)
1

3
(
1 2
4 −1

) =
1

9
(
1 2
4 −1

) (
1 2
4 −1

) =
1

9
(
9 0
0 9

) = 𝐼 

Et 𝑠 ≠ ±𝑖𝑑 

Donc 𝑠 est une symétrie. 

Autre méthode  
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det(𝑆) = −
1

9
−
8

9
= −1      et       tr(𝑆) = 𝑎 + 𝑑 =

1

3
−
1

3
= 0 

Lorsque 𝑆 = (
𝑎 𝑐
𝑏 𝑑

) 

Entraine que 𝑠 est une symétrie 

4.   

𝑃2 = (
−1 2
−1 2

) (
−1 2
−1 2

) = (
−1 2
−1 2

) = 𝑃 

Et 𝑝 ≠ 𝑖𝑑 donc 𝑝 est une projection 

Autre méthode  

det(𝑃) = −2 + 2 = 0      et      tr(𝑃) = −1 + 2 = 1 

Entraine que 𝑝 est une projection 

5. Si 𝑢⃗ = (𝑥, 𝑦) pose 𝑋 = (
𝑥
𝑦) ses coordonnées dans la base canonique 

𝑢⃗  est invariant si et seulement si 

𝑠(𝑢⃗ ) = 𝑢⃗ ⇔ 𝑆𝑋 = 𝑋 ⇔ (

1

3

2

3
4

3
−
1

3

)(
𝑥
𝑦) = (

𝑥
𝑦) ⇔ {

𝑥

3
+
2𝑦

3
= 𝑥

4𝑥

3
−
𝑦

3
= 𝑦

⇔ {
−
2𝑥

3
+
2𝑦

3
= 0

4𝑥

3
−
4𝑦

3
= 0

⇔ 𝑥 − 𝑦 = 0 ⇔ 𝑦

= 𝑥 

Donc 𝑢⃗ = (𝑥, 𝑥) = 𝑥(1,1), par conséquent un vecteur invariant non nul de 𝑠 est (1,1) = 𝑒1⃗⃗  ⃗ + 𝑒2⃗⃗  ⃗ 

 

𝑢⃗ ∈ 𝐸 ⇔ 𝑠(𝑢⃗ ) = −𝑢⃗ ⇔ 𝑆𝑋 = −𝑋 ⇔ (

1

3

2

3
4

3
−
1

3

)(
𝑥
𝑦) = −(

𝑥
𝑦) ⇔ {

𝑥

3
+
2𝑦

3
= −𝑥

4𝑥

3
−
𝑦

3
= −𝑦

⇔ {

4𝑥

3
+
2𝑦

3
= 0

4𝑥

3
+
2𝑦

3
= 0

⇔ 2𝑥 + 𝑦 = 0 ⇔ 𝑦 = −2𝑥 

Donc 𝑢⃗ = (𝑥,−2𝑥) = 𝑥(1,−2) 

Un vecteur directeur de 𝐸 est (1, −2) = 𝑒1⃗⃗  ⃗ − 2𝑒2⃗⃗  ⃗ 

6. La matrice 𝑀 de 𝑓 dans la base canonique est : 

𝑀 = 𝑃𝑆 = (
−1 2
−1 2

)
1

3
(
1 2
4 −1

) =
1

3
(
−1 2
−1 2

) (
1 2
4 −1

) =
1

3
(
7 −4
7 −4

) 

7.  

𝑀2 =
1

3
(
7 −4
7 −4

)
1

3
(
7 −4
7 −4

) =
1

9
(
7 −4
7 −4

) (
7 −4
7 −4

) =
1

9
(
21 −12
21 −12

) =
1

3
(
7 −4
7 −4

) = 𝑀 

Donc 𝑀  est une projection. 

Autre méthode  

det(𝑀) =
7

3
× (−

4

3
) +

4

3
×
7

3
= 0      et      tr(𝑃) =

7

3
−
4

3
= 1 

Entraine que 𝑓 est une projection 

8.    

𝑢1⃗⃗⃗⃗  et 𝑢2⃗⃗⃗⃗  ne sont pas proportionnels donc ils forment une base de ℝ2 

On pose 𝑋𝑢1⃗⃗⃗⃗  ⃗ = (
1
1
) les coordonnées de 𝑢1⃗⃗⃗⃗  dans la base canonique 

Les coordonnées de 𝑓(𝑢1⃗⃗⃗⃗ ) dans la base 𝛽 sont 

𝑀𝑋𝑢1⃗⃗⃗⃗  ⃗ =
1

3
(
7 −4
7 −4

) (
1
1
) =

1

3
(
3
3
) = (

1
1
) = 𝑋𝑢1⃗⃗⃗⃗  ⃗ 

Donc 𝑓(𝑢1⃗⃗⃗⃗ ) = 𝑢1⃗⃗⃗⃗  

On pose 𝑋𝑢2⃗⃗⃗⃗  ⃗ = (
4
7
) les coordonnées de 𝑢1⃗⃗⃗⃗  dans la base canonique 
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Les coordonnées de 𝑓(𝑢2⃗⃗⃗⃗ ) dans la base 𝛽 sont 

𝑀𝑋𝑢2⃗⃗⃗⃗  ⃗ =
1

3
(
7 −4
7 −4

) (
4
7
) =

1

3
(
0
0
) = (

0
0
) = 0 × 𝑋𝑢2⃗⃗⃗⃗  ⃗ 

Donc 𝑓(𝑢2⃗⃗⃗⃗ ) = 0⃗  

La matrice 𝑀′ de 𝑓 dans la base 𝛽′ est donc 

𝑀′ = (
1 0
0 0

)

𝑓(𝑢1⃗⃗⃗⃗  ⃗) 𝑓(𝑢2⃗⃗⃗⃗  ⃗)

𝑢1⃗⃗⃗⃗ 

𝑢2⃗⃗⃗⃗ 
 

Allez à : Exercice 15 


